THE HODGE–TATE PERIOD MAP

TIANJIAO NIE

Contents

1. Introduction	1
1.1. Overview	1
1.2. Notations	1
2. Technical tools	2
2.1. Canonical subgroups	2
2.2. Hartog's extension principle	3
2.3. Tate's normalized traces	5
2.4. Riemann's Hebbarkeitssatz	5
2.5. The Hodge–Tate filtration	6
3. Siegel Modular Varieties	6
4. The anti-canonical towers	8
4.1. The Frobenius tower of formal models	8
4.2. The anti-canonical tower of level $\Gamma_{\rm s}$	12
4.3. Lifting to level Γ_1	15
4.4. Lifting to level Γ	19
5. The Hodge–Tate period map	20
5.1. The map of topological spaces	20
5.2. The map of adic spaces	22
Appendix A. Review of deformation theory	24
Appendix B. Review of perfectoid spaces	25
References	26

1. INTRODUCTION

1.1. **Overview.** The main result is the following.

Theorem 1.1.1. For any tame level $K^p \subset \mathrm{GSp}_{2g}(\mathbb{A}_f^p)$ contained in $\{\gamma \in \mathrm{GSp}_{2g}(\widehat{\mathbb{Z}}^p) \mid \gamma \equiv 1 \mod N\}$ for some $N \geq 3$ prime to p, there exists a perfectoid space $\mathcal{X}^*_{\Gamma(p^\infty), K^p}$ over $\mathbb{Q}_p^{\mathrm{cycl}}$ such that

$$\mathcal{X}^*_{\Gamma(p^\infty),K^p} \sim \lim_m \mathcal{X}^*_{\Gamma(p^m),K^p}$$

Moreover, there is a $GSp_{2g}(\mathbb{Q}_p)$ -equivariant Hodge–Tate period map

 π

$$_{\mathrm{HT}}: \mathcal{X}^*_{\Gamma(p^\infty), K^p} \to \mathscr{F}\!\ell.$$

The strategy is to construct the map $\pi_{\rm HT}$ in steps.

First we construct a map of the underlying topological spaces

$$|\pi_{\mathrm{HT}}|: |\mathcal{X}^*_{\Gamma(p^\infty)}| \setminus |\mathcal{Z}_{\Gamma(p^\infty)}| \to |\mathscr{F}\ell|$$

which is constructed using the moduli interpretation of Shimura varieties and the Hodge–Tate filtration.

1.2. Notations. Throughout this paper, $0 \le \epsilon < 1/2$ is a number such there exists an element in $\mathbb{Z}_p^{\text{cycl}}$ of valuation ϵ , and any such element will be denoted by $p^{\epsilon} \in \mathbb{Z}_p^{\text{cycl}}$. We also assume that $g \ge 2$.

Definition 1.2.1. Fix an element $t \in (\mathbb{Z}_p^{\text{cycl}})^{\flat}$ such that $|t| = |t^{\sharp}| = |p|$, such that t admits a (p-1)-th root. Then we get an identification $(\mathbb{Z}_p^{\text{cycl}})^{\flat} = \mathbb{F}_p[[t^{1/(p-1)p^{\infty}}]].$

2. Technical tools

2.1. Canonical subgroups.

Definition 2.1.1. Let $A \to S$ be an Abelian scheme with S of characteristic p > 0. Let $e: S \to A$ be the unit section. Let $\omega_{A/S}$ be the line bundle on S defined as $\wedge^g e^* \Omega^1_{A/S}$. The Verschiebung map $V: A^{(p)} \to A$ induces a map $\omega_{A/S} \to \omega_{A^{(p)}/S} \simeq \omega_{A/S}^{\otimes p}$, which in turn induces a canonical section $\operatorname{Ha}(A/S) \in H^0(S, \omega_{A/S}^{\otimes (p-1)})$, called the Hasse invariant of A/S.

Definition 2.1.2. Let R be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let $A \to \text{Spec}(R)$ be an Abelian scheme. Let $A_1 \to \text{Spec}(R_1)$ be its reduction modulo p, where $R_1 = R/p$. For an integer $m \ge 1$, the Abelian scheme $A \to \text{Spec}(R)$ is said to satisfy the weak $O(m, \epsilon)$ condition if

$$\operatorname{Ha}(A_1/\operatorname{Spec}(R_1))^{(p^m-1)/(p-1)} \in H^0(R_1, \omega^{\otimes (p^m-1)})$$

divides p^{ϵ} , in the sense that there exists $u \in H^0(R_1, \omega^{\otimes (1-p^m)})$ such that $u \cdot \operatorname{Ha}(A_1/\operatorname{Spec}(R_1))^{(p^m-1)/(p-1)} = p^{\epsilon}$ as elements in $R_1 = R/p$.

The Abelian scheme $A \to \operatorname{Spec}(R)$ is said to satisfy the strong $O(m, \epsilon)$ condition if $\operatorname{Ha}(A_1/R_1)^{p^m}$ divides p^{ϵ} .

Lemma 2.1.3. Let S be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let G be a finite locally free commutative group scheme over S. Let $C_1 \subset G \otimes_S S/p$ be a finite locally free subgroup. Assume that for $H = (G \otimes_S S/p)/C_1$, multiplication by p^{ϵ} on the Lie complex ℓ_H^{\vee} is homotopical to zero. Then there exists a finite locally free subgroup $C \subset G$ over S such that $C \otimes_S S/p^{1-\epsilon} = C_1 \otimes_{S/p} S/p^{1-\epsilon}$.

Proof. We will apply Lemma A.0.9. Take A = S/p, $B = S/p^{2-\epsilon}$, and

$$B' = \{(x, y) \in S/p^{2-2\epsilon} \times S/p \mid x = y \in R/p^{1-\epsilon}\}.$$

The map $B \to B'$ is given by $x \mapsto (x, x)$. Let J (resp. J') be the kernel of $B \to A$ (resp. $B' \to A$). Then both J and J' are isomorphic to $S/p^{1-\epsilon}$ as Abelian groups. The transition map $S/p^{1-\epsilon} \simeq J \to J' \simeq S/p^{1-\epsilon}$ is given by multiplication by p^{ϵ} . Let K be the cone of the map $\ell_{C_1}^{\vee} \to \ell_{G\otimes_S S/p}^{\vee}$ of Lie complexes. Then $K \simeq \ell_H^{\vee}$ by Remark A.0.6. In particular, multiplication by p^{ϵ} is homotopic to zero on K. Then the image of the obstruction $o \in \operatorname{Ext}^1(H, K \otimes^L J)$ in $\operatorname{Ext}^1(H, K \otimes^L J')$ is zero. The vanishing of the obstruction immediately shows the existence of a lift $C \subset G$ such that $C \otimes_S S/p^{1-\epsilon} = C_1 \otimes_{S/p} S/p^{1-\epsilon}$.

Lemma 2.1.4. Let R be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let X be a scheme over R such that $\Omega^1_{X/R}$ is killed by p^{ϵ} for some $\epsilon > 0$. Then the map $X(R) \to X(R/p^{\delta})$ is injective for all $\delta > \epsilon$.

Proof. Omitted.

Lemma 2.1.5. Let R be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let $A \to \text{Spec}(R)$ be an Abelian scheme satisfying weak $O(m, \epsilon)$. Then there is a unique closed subgroup $C_m \subset A[p^m]$ such that $C_m = \ker(F^m) \mod p^{1-\epsilon}$.

Proof. Let $H_1 = \ker(V^m : A_1^{(p^m)} \to A_1)$ be the kernel of the *m*-th composition of the Verschiebung map. We have a short exact sequence $0 \to H_1 \to A_1^{(p^m)} \to A_1 \to 0$. Taking the Lie complex of each term, we see that $\ell_{H_1}^{\vee}$ is represented by the complex $\operatorname{Lie}(A_1^{(p^m)}) \to \operatorname{Lie}(A_1)$. Note that the determinant of $\operatorname{Lie}(A_1^{(p^m)}) \to \operatorname{Lie}(A_1)$ is simply

$$\operatorname{Ha}(A_1/R_1)^{(p^m-1)/(p-1)} \in H^0(R_1, \omega^{\otimes (p^m-1)}),$$

which is a direct corollary of the definition of the Hasse variant. It follows that multiplication by $\operatorname{Ha}(A_1/R_1)^{(p^m-1)/(p-1)}$ on $\ell_{H_1}^{\vee}$ is null-homotopic. As the Abelian scheme A satisfies the weak $O(m, \epsilon)$ condition, we conclude that multiplication by p^{ϵ} on $\ell_{H_1}^{\epsilon}$ is null-homotopic. Thus Lemma 2.1.3 shows the exsitence of $C_m \subset A[p^m]$ such that

$$C_m \otimes_R R/p^{1-\epsilon} = \ker(F^m) \otimes_{R_1} R/p^{1-\epsilon}.$$

To show that the subgroup C_m is unique, we will directly describe the points of C_m : for every *p*-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra R' with $R \to R'$, we have

$$C_m(R') = \{ s \in A[p^m](R') \mid s \equiv 0 \mod p^{(1-\epsilon)/p^m} \}.$$

It sufficies to prove the equality for R' = R.

Let $s \in C_m(R)$. Since $C_m \otimes_R R/p^{1-\epsilon} = \ker(F^m) \otimes_{R_1} R/p^{1-\epsilon}$, the image of s in $A(R/p^{1-\epsilon}) = A_1(R/p^{1-\epsilon})$, denoted by $s_{1-\epsilon}$, lies in the kernel of F^m . Thus $s_{1-\epsilon}$ lies in the kernel of $A_1(R_{1-\epsilon}) \to A_1(\operatorname{Fr}_*^m R_{1-\epsilon})$, where Fr is the absolute Frobenius. Note that $s_{1-\epsilon}$ also lies in $A_1[p^m](R_{1-\epsilon})$. Hence $s \equiv 0 \mod p^{(1-\epsilon)/p^m}$.

Before we prove the converse, we need the following result. Since multiplication by p^{ϵ} is null-homotopic on $\ell_{H_1}^{\vee}$, we see that p^{ϵ} kills $\operatorname{Lie}(H_1)^{\vee} = e^*\Omega_{H_1/R_1}$. Thus p^{ϵ} kills Ω_{H_1/R_1}^1 . Let $H = A[p^m]/C_m$. Note that $H \otimes_R R_{1-\epsilon} = H_1 \otimes_{R_1} R_{1-\epsilon}$. Hence $\Omega_{H\otimes_R R_{1-\epsilon}/R_{1-\epsilon}}^1 \simeq \Omega_{H/R}^1/p^{1-\epsilon}$ is killed by p^{ϵ} . Since $\Omega_{H/R}^1$ is p-adically complete, it follows that $\Omega_{H/R}^1$ is killed by the multiplication by p^{ϵ} map.

Now let $s \in A[p^m](R)$ be an element such that $s \equiv 0 \mod p^{(1-\epsilon)/p^m}$. By a similar argument as above, we conclude that $s_{1-\epsilon} \in C_m(R/p^{1-\epsilon}) \subset A[p^m](R/p^{1-\epsilon})$. Then the image $t \in H(R)$ of s is 0 modulo $p^{1-\epsilon}$. Finally, apple Lemma 2.1.4 with $\delta = 1 - \epsilon$, we conclude that $t = 0 \in H(R)$, showing that $s \in C_m(R)$ as desired.

Definition 2.1.6. Let R be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. We say that an Abelian scheme $A \to \text{Spec}(R)$ has a weak canonical subgroup of level m if $A \to \text{Spec}(R)$ satisfies weak $O(m, \epsilon)$ for some $\epsilon < 1/2$. In that case, we call $C_m \subset A[p^m]$ in Lemma 2.1.5 the weak canonical subgroup of level m.

If moreover A satisfies the strong $O(m, \epsilon)$ condition, then we say that C_m is a strong canonical subgroup.

Lemma 2.1.7. Let R be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let A and B be Abelian schemes over R.

- (1) If A has a canonical subgroup $C_m \subset A[p^m]$ of level m, then it has a canonical subgroup $C_{m'} \subset A[p^{m'}]$ of every level $m' \leq m$, and $C_{m'} \subset C_m$.
- (2) Let $f: A \to B$ be a map of Abelian schemes. Assume that both A and B have canonical subgroups $C_m \subset A[p^m]$ and $D_m \subset B[p^m]$ of level m. Then C_m maps into D_m under f.
- (3) Assume that A has a canonical subgroup $C_m \subset A[p^m]$ of level m, and let \overline{x} be a geometric point of $\operatorname{Spec}(R[p^{-1}])$. Then $C_m(\overline{x}) \simeq (\mathbb{Z}/p^m \mathbb{Z})^g$, where g is dimension of the Abelian variety over \overline{x} .

Proof. Omitted.

2.2. Hartog's extension principle. Let's recall Hartog's theorem of analytic functions.

Theorem 2.2.1 (Hartog's Theorem). Let $G \subset \mathbb{C}^n$ be an open subset with $n \geq 2$, and let K be a compact subset of G. If $G \setminus K$ is connected, then any holomorphic function on $G \setminus K$ can be extended to a holomorphic function on G in a unique way.

We shall establish several analogies of Hartogs' theorem.

Lemma 2.2.2 ([GR68, Lemma III.3.1, Proposition III.3.3]). Let X be a locally Noetherian scheme. Let $Z \subset X$ be a closed subscheme. Let \mathcal{F} be a coherent \mathcal{O}_X -module. Let $n \geq 1$ be an integer. Then the following are equivalent:

(1) For any open subscheme V of X, the map

$$H^i(V,\mathcal{F}) \to H^i(V \setminus Z,\mathcal{F})$$

is bijective for $i \leq n-2$ and injective for i = n-1.

(2) For any open subscheme V of X, the local cohomology

$$H^i_{V\cap Z}(V,\mathcal{F}) = 0$$

for all $i \leq n-1$.

(3) For any $x \in Z$ the depth of \mathcal{F}_x as an $\mathcal{O}_{X,x}$ -module is at least n.

Lemma 2.2.3 (Serre's criterion). A Noetherian ring R is normal if and only if $R_{\mathfrak{p}}$ is regular for every \mathfrak{p} of height ≤ 1 and $R_{\mathfrak{p}}$ has depth ≥ 2 for every \mathfrak{p} of height ≥ 2 .

Lemma 2.2.4. Let R be a normal ring, i.e. the localization $R_{\mathfrak{p}}$ is an integrally closed domain for every prime ideal \mathfrak{p} of R. Assume R is Noetherian. Let $Z \subset \operatorname{Spec}(R)$ be a closed subscheme of codimension at least 2, i.e. every $\mathfrak{p} \in Z$ has height at least 2. Then for $U = \operatorname{Spec}(R) \setminus Z$,

$$H^0(\operatorname{Spec}(R), \mathcal{O}_{\operatorname{Spec}(R)}) \simeq H^0(U, \mathcal{O}_{\operatorname{Spec}(R)}).$$

Proof. Consider n = 2 and $\mathcal{F} = \mathcal{O}_X$ in Lemma 2.2.2. Serre's criterion, cf. Lemma 2.2.3, guarantees the third condition in Lemma 2.2.2. The first assertion gives the desired result.

It can also be proved directly as follows.

Lemma 2.2.5. Let X be a locally Noetherian normal scheme. Let U be an open subscheme of X with codimension ≥ 2 . Then the map $H^0(X, \mathcal{O}_X) \to H^0(U, \mathcal{O}_X)$ is an isomorphism.

Proof. We may assume that $X = \operatorname{Spec}(A)$ where A is normal integral domain. For every non-empty open V of X, the ring $\Gamma(V, \mathcal{O}_X)$ may be considered as a subring of the function field $K(X) = \operatorname{Frac}(A)$ such that the restriction maps are given by inclusions of rings. Let Z be an irreducible closed subset of X of codimension 1. Then U intersects Z non-trivially, so it contains the generic point η of Z. In other words, the subring $\Gamma(U, \mathcal{O}_X)$ of the function field K(X) is contained in the stalk $\mathcal{O}_{X,\eta}$. But $A = \Gamma(X, \mathcal{O}_X)$ is the intersection of all the stalks $\mathcal{O}_{X,\eta}$, where η is a prime ideal of height 1; in other words, where η is the generic point of an irreducible closed subset of codimension 1.

Lemma 2.2.6. Let R be a topologically finitely generated, flat, and p-adically complete \mathbb{Z}_p -algebra, such that $\overline{R} = R/p$ is normal. Fix $f \in R$ such that its reduction $\overline{f} \in \overline{R}$ is not a zero-divisor. Let $0 < \epsilon \leq 1$. Set $S = (R \otimes_{\mathbb{Z}_p} \mathbb{Z}_p^{\text{cycl}}) \langle u \rangle / (u \cdot f - p^{\epsilon})$. Then S is p-adically complete and flat over $\mathbb{Z}_p^{\text{cycl}}$. Fix a closed subscheme $Y \subset \text{Spec}(\overline{R})$ of codimension ≥ 2 . Let Z be the inverse image of Y in Spf(S). Then for $U = |\text{Spf}(S)| \setminus Z$,

$$S = H^0(\mathrm{Spf}(S), \mathcal{O}_{\mathrm{Spf}(S)}) \simeq H^0(U, \mathcal{O}_{\mathrm{Spf}(S)}).$$

Proof. We first show that the map

 $S \simeq H^0(\mathrm{Spf}(S), \mathcal{O}_{\mathrm{Spf}(S)}) \to H^0(U, \mathcal{O}_{\mathrm{Spf}(S)})$

is injective. Since S is p-adically separated and $H^0(U, \mathcal{O}_{Spf(S)})$ is flat over \mathbb{Z}_p^{cycl} , it suffices to show that

$$S_{\epsilon} \simeq H^0(\operatorname{Spec}(S_{\epsilon}), \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})}) \to H^0(U_{\epsilon}, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$$

is injective, where $S_{\epsilon} = S/p^{\epsilon}$, Z_{ϵ} is the inverse image of Y in $\operatorname{Spec}(S_{\epsilon})$, and $U_{\epsilon} = \operatorname{Spec}(S_{\epsilon}) \setminus Z_{\epsilon}$. Note that

$$\mathcal{B}_{\epsilon} = (R \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\text{cycl}}) \langle u \rangle / (uf, p^{\epsilon}) = R_{\epsilon}[u] / (uf_{\epsilon})$$

where $R_{\epsilon} = R \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p^{\text{cycl}}/p^{\epsilon})$ and $f_{\epsilon} \in R_{\epsilon}$ is the image of $f \in R$.

Let $W \subset \operatorname{Spec}(S_{\epsilon})$ be the preimage of $V = V(\overline{f}) \subset \operatorname{Spec}(\overline{R})$. Then $W = V \times_{\operatorname{Spec}}(\mathbb{F}_p) \mathbb{A}^{1}_{\mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon}}$ is affine. The map $S_{\epsilon} \to R_{\epsilon}$ sending u to zero induces a section $\operatorname{Spec}(R_{\epsilon}) \to \operatorname{Spec}(S_{\epsilon})$. We have a decomposition $\operatorname{Spec}(S_{\epsilon}) = N \cup W$, where $N = \operatorname{Spec}(R_{\epsilon}[u]/(u)) \simeq \operatorname{Spec}(R_{\epsilon})$ is the image of the section $\operatorname{Spec}(R_{\epsilon}) \to \operatorname{Spec}(S_{\epsilon})$. Take $V_{\epsilon} = V \times_{\operatorname{Spec}}(\mathbb{F}_p) \operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon})$. Then $W = V_{\epsilon} \times_{\operatorname{Spec}}(\mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon}) \mathbb{A}^{1}_{\mathbb{Z}_p^{\operatorname{cycl}}/p^{\epsilon}}$, and $N \cap W = V_{\epsilon}$.

We then have the following interpretations:

- (1) Each section in $\Gamma(\operatorname{Spec}(S_{\epsilon}), \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$ is a pair (f_1, f_2) such that $f_1 \in \Gamma(N, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$ and $f_2 \in \Gamma(W, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$ such that $f_1 = f_2$ on $N \cap W = V_{\epsilon}$.
- (2) Each section in $H^0(U_{\epsilon}, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$ is a pair (f_1, f_2) such that $f_1 \in H^0(U_{\epsilon} \cap N, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$, and $f_2 \in H^0(U_{\epsilon} \cap W, \mathcal{O}_{\operatorname{Spec}(S_{\epsilon})})$, such that $f_1 = f_2$ on $U_{\epsilon} \cap N \cap W$.

The (classical) Hartog's extension principle, i.e. Lemma 2.2.4 applied to $Y \subset \text{Spec}(\overline{R})$, shows that

$$\Gamma(\operatorname{Spec}(\overline{R}) \setminus Y) \simeq \Gamma(\operatorname{Spec}(\overline{R})).$$

Under base-change this gives

$$\Gamma(U_{\epsilon} \cap N) \simeq \Gamma(\operatorname{Spec}(\overline{Y}) \setminus Y) \otimes_{\mathbb{F}_p} \mathbb{Z}_p^{\operatorname{cycl}} / p^{\epsilon} \simeq \Gamma(\operatorname{Spec}(\overline{R})) \otimes_{\mathbb{F}_p} \mathbb{Z}_p^{\operatorname{cycl}} / p^{\epsilon} \simeq \Gamma(N).$$

Thus injectivity reduces to show that

$$\Gamma(V) \otimes_{\mathbb{F}_p} (\mathbb{Z}_p^{\text{cycl}}/p^{\epsilon})[u] = \Gamma(W) \to \Gamma(U_{\epsilon} \cap W) = \Gamma(V \setminus Y) \otimes_{\mathbb{F}_p} (\mathbb{Z}_p^{\text{cycl}}/p^{\epsilon})[u]$$

is injective. It suffices to show that $\Gamma(V) \to \Gamma(V \setminus Y)$ is injective, where both V and $V \setminus Y$ are \mathbb{F}_p -schemes. We have depth $(\mathcal{O}_{V,y}) = \text{depth}(\overline{R}_y) - 1$ for all $y \in V$, cf. [Sta, Tag 090R]. Thus depth $(\mathcal{O}_{V,y}) \ge 1$ for every $x \in V \cap Y$ by Serre's criterion, i.e. Lemma 2.2.3. Then the desired injectivity follows from Lemma 2.2.2.

It remains to prove the surjectivity. Let S' be the *u*-adic completion of S equipped with the (p, u)adic topology. We have a natural injection $S \to S'$. Since $u \cdot f = p^{\epsilon}$, the topology of S' is also *u*-adic. Hence $|\text{Spf}(S')| = |\text{Spec}(S_{\epsilon})|$ is a closed subspace of |Spf(S)|. The first step is to prove the surjectivity of $S' \to H^0(U \cap |\text{Spf}(S')|, \mathcal{O}_{\text{Spf}(S')})$. By modulo u, it sufficies to show the surjectivity of

$$\overline{R} \otimes_{\mathbb{F}_p} \mathbb{Z}_p^{\text{cycl}} / p^{\epsilon} = R_{\epsilon} \to H^0(U \cap \operatorname{Spec}(R_{\epsilon}), \mathcal{O}_{\operatorname{Spec}(R_{\epsilon})}) = H^0(U \cap \operatorname{Spec}(\overline{R}), \mathcal{O}_{\operatorname{Spec}(\overline{R})}) \otimes_{\mathbb{F}_p} \mathbb{Z}_p^{\text{cycl}} / p^{\epsilon}.$$

Lemma 2.2.4 shows that the map

$$\overline{R} \to H^0(\operatorname{Spec}(\overline{R}) \setminus Y, \mathcal{O}_{\operatorname{Spec}(\overline{R})}) = H^0(\operatorname{Spec}(\overline{R}) \cap U, \mathcal{O}_{\operatorname{Spec}(R_{\epsilon})})$$

is an isomorphism. From here the desired surjectivity is clear.

2.3. Tate's normalized traces.

Lemma 2.3.1. Let R be a p-adically complete flat \mathbb{Z}_p -algebra. Let $Y_1, \ldots, Y_n \in R$. Let $P_1, \ldots, P_n \in R\langle X_1, \ldots, X_n \rangle$ be topologically nilpotent elements, or equivalently, each P_i has topologically nilpotent coefficients in R. Let

$$S = R\langle X_1, \dots, X_n \rangle / (X_1^p - Y_1 - P_1, \dots, X_n - Y_n - P_n).$$

Then

- (1) The ring S is a finite free R-module of rank p^n , with a basis given by $X_1^{i_1} \cdots X_n^{i_n}$ with $0 \le i_1, \ldots, i_n \le p-1$.
- (2) Let I be the ideal of R generated by p together with all the coefficients of all P_i . Then the trace map $\operatorname{tr}_{S/R}: S \to R$ sends S to I^n , i.e. $\operatorname{tr}_{S/R}(S) \subset I^n$.

Proof. Omitted.

Lemma 2.3.2. Let R be a p-adically complete flat \mathbb{Z}_p -algebra topologically of finite type, formally smooth of dimension n over \mathbb{Z}_p . Let $f \in R$ such that its reduction $\overline{f} \in \overline{R} = R/p$ is not a zero-divisor. Let $0 \le \epsilon < 1/2$. Let

$$S_{\epsilon} = (R \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\text{cycl}}) \langle u_{\epsilon} \rangle / (u_{\epsilon} \cdot f - p^{\epsilon}).$$

Suppose $\varphi: S_{\epsilon} \to S_{\epsilon/p}$ is a map of $\mathbb{Z}_p^{\text{cycl}}$ -algebra such that modulo $p^{1-\epsilon}$ it is given by the relative Frobenius. In other words, $\varphi \mod p^{1-\epsilon}$ is the map

$$R_{1-\epsilon}[u_{\epsilon}]/(f \cdot u_{\epsilon} - p^{\epsilon}) \to R_{1-\epsilon}[u_{\epsilon/p}]/(f \cdot u_{\epsilon/p} - p^{\epsilon/p}),$$

where $R_{1-\epsilon} = \overline{R} \otimes_{\mathbb{Z}_p} (\mathbb{Z}_p^{\text{cycl}}/p^{1-\epsilon})$, which sends u_{ϵ} to $u_{\epsilon/p}^p$, and restricts to $\operatorname{Fr}_{\overline{R}} \otimes \operatorname{id}$ on $R_{1-\epsilon}$. Then

(1) The map

$$\varphi[1/p]: S_{\epsilon}[1/p] \to S_{\epsilon/p}[1/p]$$

is finite and flat of degree p^n .

(2) The trace map

$$\operatorname{tr} = \operatorname{tr}_{S_{\epsilon/p}[1/p]/S_{\epsilon}[1/p]} : S_{\epsilon/p}[1/p] \to S_{\epsilon}[1/p]$$

sends $S_{\epsilon/p}$ into $p^{n-(2n+1)\epsilon}S_{\epsilon}$. Here $S_{\epsilon/p}[1/p]$ is viewed as an $S_{\epsilon}[1/p]$ -algebra via $\varphi[1/p]$.

Proof. Omitted.

2.4. Riemann's Hebbarkeitssatz.

Definition 2.4.1. Let p be a prime. Let K be a perfectoid field (of any characteristic). Let t be a non-zero element of K with $|p| \leq |t| < 1$. A triple $(\mathcal{X}, \mathcal{Z}, \mathcal{U})$, where \mathcal{X} is an affinoid perfectoid space over K, \mathcal{Z} is a closed subset of \mathcal{X} , and \mathcal{U} is a quasi-compact open subset of $\mathcal{X} \setminus \mathcal{Z}$, is said to be good, if

$$H^0(\mathcal{X}, \mathcal{O}^+_{\mathcal{X}}/t)^a \simeq H^0(\mathcal{X} \backslash \mathcal{Z}, \mathcal{O}^+_{\mathcal{X}}/t)^a \hookrightarrow H^0(\mathcal{U}, \mathcal{O}^+_{\mathcal{U}}/t)^a$$

Remark 2.4.2. This notion is independent of the choice of t, and is compatible with tilting.

Situation 2.4.3. Let $K = \mathbb{F}_p((t^{1/p^{\infty}}))$. Let R_0 be a reduced Tate K-algebra topologically of finite type. Let $\mathcal{X}_0 = \operatorname{Spa}(R_0, R_0^\circ)$ be the associated affinoid adic space of finite type over K. Let R be the completed perfection of R_0 , which is a p-finite perfectoid K-algebra. Let $\mathcal{X} = \operatorname{Spa}(R, R^+)$ with $R^+ = R^\circ$, the associated p-finite affinoid perfectoid space over K. Let I_0 be an ideal of R_0 . Let $I = I_0 R \subset R$. Let $\mathcal{Z}_0 = V(I_0) \subset \mathcal{X}_0$. Let $\mathcal{Z} = V(I) \subset \mathcal{X}$. Let \mathcal{U}_0 be a quasi-compact open subset of $\mathcal{X}_0 \setminus \mathcal{Z}_0$ with preimage $\mathcal{U} \subset \mathcal{X} \setminus \mathcal{Z}$.

Lemma 2.4.4. Assume Situation 2.4.3. Suppose $(\mathcal{X}, \mathcal{Z}, \mathcal{U})$ is good. Suppose that R_0 is normal, and that $V(I_0) \subset \operatorname{Spec}(R_0)$ is of codimension ≥ 2 . Let R'_0 be a finite normal R_0 -algebra which is étale outside $V(I_0)$, and such that no irreducible component of $\operatorname{Spec}(R'_0)$ maps into $V(I_0)$. Let $I'_0 = I_0 R'_0$, and $\mathcal{U}'_0 \subset \mathcal{X}'_0$ the preimage of \mathcal{U}_0 . Let R', I', \mathcal{X}' , \mathcal{Z}' , \mathcal{U}' be the associated perfectoid objects.

(1) There is a perfect trace pairing

$$\operatorname{Sr}_{R_0'/R_0}: R_0' \otimes_{R_0} R_0' \to R_0.$$

(2) The trace pairing induces a trace pairing

$$\operatorname{tr}_{R'^{\circ}/R^{\circ}}: R'^{\circ} \otimes_{R^{\circ}} R'^{\circ} \to R^{\circ}.$$

which is almost perfect.

(3) For all open subsets $\mathcal{V} \subset \mathcal{X}$ with preimage $\mathcal{V}' \subset \mathcal{X}'$, the trace pairing induces an isomorphism

$$H^0(\mathcal{V}', \mathcal{O}^+_{\mathcal{X}'}/t)^a \simeq \operatorname{Hom}_{R^\circ/t}(R'^\circ/t, H^0(\mathcal{V}, \mathcal{O}^+_{\mathcal{X}}/t))^a$$

- (4) The triple $(\mathcal{X}', \mathcal{Z}', \mathcal{U}')$ is good.
- (5) If $\mathcal{X}' \to \mathcal{X}$ is surjective, then the map

$$H^0(\mathcal{X}, \mathcal{O}^+_{\mathcal{X}}/t) \to H^0(\mathcal{X}', \mathcal{O}^+_{\mathcal{X}'}/t) \cap H^0(\mathcal{U}, \mathcal{O}^+_{\mathcal{X}}/t)$$

is an almost isomorphism.

Proof. Omitted.

Lemma 2.4.5. Suppose we have a filtered inductive system $(R_0^{(i)})_{i \in I}$ as in the previous lemma, giving rise to $\mathcal{X}^{(i)}, \mathcal{Z}^{(i)}, \mathcal{U}^{(i)}$. Assume that all transition maps $\mathcal{X}^{(i)} \to \mathcal{X}^{(j)}$ are surjective. Let $\widetilde{\mathcal{X}}$ be the inverse limit of the $\mathcal{X}^{(i)}$ in the category of perfectoid spaces over K, with preimage $\widetilde{\mathcal{Z}} \subset \widetilde{\mathcal{X}}$ of \mathcal{Z} , and $\widetilde{\mathcal{U}} \subset \widetilde{\mathcal{X}} \setminus \widehat{\mathcal{U}}$ of \mathcal{U} . Then the triple $(\widetilde{\mathcal{X}}, \widetilde{\mathcal{Z}}, \widetilde{\mathcal{U}})$ is good.

Proof. Omitted.

Lemma 2.4.6. Assume Situation 2.4.3. Let A_0 be a ring that is normal, of finite type over \mathbb{F}_p , and admitting a resolution of singularities. Assume further that

- (1) $R_0 = (A_0 \widehat{\otimes}_{\mathbb{F}_p} K) \langle u \rangle / (uf t)$ for some non-zero-divisor $f \in A_0$. (2) $I_0 = JR_0$ for some ideal $J \subset A_0$ with $V(J) \subset \text{Spec}(A_0)$ of codimension ≥ 2 .
- (3) $\mathcal{U}_0 = \{x \in \mathcal{X}_0 \mid \exists g \in J, |g(x)| = 1\}.$

Then the triple $(\mathcal{X}, \mathcal{Z}, \mathcal{U})$ is good.

Proof. Omitted.

2.5. The Hodge–Tate filtration.

Lemma 2.5.1. Let C be an algebraically closed and complete extension of \mathbb{Q}_p . Let $A \to \operatorname{Spec}(C)$ be an Abelian variety. Then A has its Hodge–Tate filtration

$$0 \to \operatorname{Lie}(A)(1) \to T_p(A) \otimes_{\mathbb{Z}_p} C \to (\operatorname{Lie}(A^{\vee}))^* \to 0$$

((todo: ...))

3. Siegel Modular Varieties

Let p be a fixed prime.

Definition 3.0.1. The symplectic similitude group GSp_{2g} is the reductive group scheme over \mathbb{Z} whose points in a commutative ring R are given by

$$\operatorname{GSp}_{2g}(R) = \{ x \in \operatorname{GL}_{2g}(V); \exists \nu(x) \in R^{\times}, x^{t} \Omega x = \nu(x) \Omega \}$$

where $\Omega = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$ is the standard symplectic matrix of order 2g.

In the following discussion, we write $G = GSp_{2q}$. Let $K_p = G(\mathbb{Z}_p)$. Let K^p be a compact open subgroup of $G(\mathbb{A}^{\infty,p})$ that is contained in

$$\Gamma(N)^{(p)} = \{g \in G(\mathbb{A}^{\infty, p}); g \equiv 1 \bmod N\}$$

for some integer $N \geq 3$ not divisible by p.

Definition 3.0.2. Let $m \ge 1$ be an integer.

$$\begin{split} \Gamma_0(p^m) &= \left\{ g \in G(\mathbb{Z}_p); g \equiv \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \mod p^m \right\} \\ \Gamma_{\rm s}(p^m) &= \left\{ g \in G(\mathbb{Z}_p); g \equiv \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \mod p^m, \nu(g) \equiv 1 \mod p^m \right\} \\ \Gamma_1(p^m) &= \left\{ g \in G(\mathbb{Z}_p); g \equiv \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \mod p^m \right\} \\ \Gamma(p^m) &= \left\{ g \in G(\mathbb{Z}_p); g \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod p^m \right\} \end{split}$$

Definition 3.0.3. Let S be the Shimura datum associated to a symplectic vector space of dimension 2g. Then we have the Shimura varieties $\operatorname{Sh}_K(S)$ for every compact open subgroup $K \subset \operatorname{GSp}_{2g}(\mathbb{A}_f)$.

Let X be the scheme over $\text{Spec}(\mathbb{Z}_{(p)})$ classifying principally polarized projective Abelian schemes of relative dimension g with level K^p structures. Let X^* be the minimal compactification of X as constructed in [FC13, Chapter V].

For each $U \in {\Gamma(p^m), \Gamma_s(p^m), \Gamma_0(p^m)}$, we set $X_{U,\mathbb{Q}} = \operatorname{Sh}_{K^p U}(\mathcal{S})$, which is a scheme over \mathbb{Q} with certain moduli interpretations (see Remark 3.0.4).

Let \mathfrak{X} be the formal scheme over $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})$ defined as the *p*-completion of $X_{\mathbb{Z}_p^{\operatorname{cycl}}} = X \times_{\operatorname{Spec}(\mathbb{Z}_{(p)})}$ $\operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}}).$

The universal Abelian scheme $A \to X$ gives a line bundle $\omega = \omega_{A/S} = \wedge^g \Omega^1_{A/X}$. The sheaf ω extends to the minimal compactification X^* . The Hasse invariant defines a section Ha $\in H^0(X_{\mathbb{F}_p}, \omega^{\otimes (p-1)})$. The section Ha extends to Ha $\in H^0(X^*_{\mathbb{F}_p}, \omega^{\otimes (p-1)})$.

Let $\mathfrak{A} \to \mathfrak{X}$ be the universal formal Abelian scheme.

Remark 3.0.4. The moduli interpretations can be described as follows.

- (1) $\operatorname{Sh}_{K^pG(\mathbb{Z}_p),\mathbb{Z}_{(p)}}$ represents the following problem $S \mapsto \{(A,\lambda,\eta)\}/\sim$ where
 - A is a projective Abelian scheme over S of relative dimension g.
 - λ is a principal polarization of A.
 - η is a level K^p structure on A.
- (2) $\operatorname{Sh}_{K^p\Gamma(p^m),\mathbb{Q}}$ represents the following problem $S \mapsto \{(A,\lambda,\eta,\eta_p)\}/\sim$ where
 - $(A, \lambda, \eta) \in \operatorname{Sh}_{K^p G(\mathbb{Z}_p), \mathbb{Z}_{(p)}}(S).$
 - η_p is a level $\Gamma(p^m)$ structure on A.

(3) $\operatorname{Sh}_{K^p\Gamma_0(p^m),\mathbb{Q}}$ represents the following problem $S \mapsto \{(A,\lambda,\eta,D)\}/\sim$ where

- $(A, \lambda, \eta) \in \operatorname{Sh}_{K^p G(\mathbb{Z}_p), \mathbb{Z}_{(p)}}(S).$
- D is a totally isotropic subgroup of $A[p^m]$.
- (4) $\operatorname{Sh}_{K^p\Gamma_s(p^m),\mathbb{Q}}$ represents the following problem $S \mapsto \{(A, \lambda, \eta, D, t)\}/\sim$ where
 - $(A, \lambda, \eta, D) \in \operatorname{Sh}_{K^p \Gamma_0(p^m), \mathbb{Q}}(S).$
 - $t: \mu_{p^m} \to \mathbb{Z}/p^m\mathbb{Z}$ is an isomorphism.

The first and second results are well-known, cf. [Kot92]. For the last two assertions, use the free action of $U/\Gamma(p^m)$ on the Shimura variety, where $U \in \{\Gamma_0(p^m), \Gamma_s(p^m)\}$.

Definition 3.0.5. Let \mathfrak{X}' be the formal scheme over $\operatorname{Spf}(\mathbb{F}_p[[t^{1/(p-1)p^{\infty}}]])$ given by the *t*-adic completion of $X \times_{\operatorname{Spec}(\mathbb{Z}_{(p)})} \operatorname{Spec}(\mathbb{F}_p[[t^{1/(p-1)p^{\infty}}]])$. Let \mathcal{X}' be the generic fiber of the adic space associated to \mathfrak{X}' . Define \mathfrak{X}'^* and \mathfrak{A}^* similarly, with generic fibers \mathcal{X}'^* and \mathcal{A}' .

Definition 3.0.6. Let $X^{\text{ord}*} \subset X^* \times_{\text{Spec}(\mathbb{Z}_{(p)})} \text{Spec}(\mathbb{F}_p)$ be the locus where the Hasse invariant is invertible. Then $X^{\text{ord}*}$ is affine over \mathbb{F}_p (as it's cut out by an ample line bundle). Let $X^{\text{ord}} \subset X \times_{\text{Spec}(\mathbb{Z}_{(p)})} \text{Spec}(\mathbb{F}_p)$ be the preimage of $X^{\text{ord}*}$, which is the ordinary locus. Let D_m be the quotient $A^{\text{ord}}[p^m]/C_m$, where $A^{\text{ord}} \to X^{\text{ord}}$ is the universal Abelian variety, and C_m is the canonical subgroup of level m. Let $X_{\Gamma_1(p^m)}^{\text{ord}}$ be the scheme over X^{ord} parametrizing all the isomorphisms $D_m^{\text{ord}} \simeq (\mathbb{Z}/p^m\mathbb{Z})^g$. Then $X_{\Gamma_1(p^m)}^{\text{ord}} \to X^{\text{ord}}$ is finite. Define

$$X_{\Gamma_1(p^m)}^{\operatorname{ord}*} = \operatorname{Spec}(H^0(X_{\Gamma_1(p^m)}^{\operatorname{ord}}, \mathcal{O}_{X_{\Gamma_1(p^m)}^{\operatorname{ord}}}))$$

Then map $X_{\Gamma_1(p^m)}^{\operatorname{ord}*} \to X^{\operatorname{ord}*}$ is a finite map of affine schemes over \mathbb{F}_p , such that $X_{\Gamma_1(p^m)}^{\operatorname{ord}}$ is the preimage of X^{ord} . Also $X_{\Gamma_1(p^m)}^{\operatorname{ord}*}$ is normal.

4. The anti-canonical towers

4.1. The Frobenius tower of formal models.

Lemma 4.1.1. Let S be a p-adically complete $\mathbb{Z}_p^{\text{cycl}}$ -algebra. There is a bijection

$$\operatorname{Hom}_{\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})}(\operatorname{Spf}(S),\mathfrak{X}^*) \simeq \operatorname{Hom}_{\operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}})}(\operatorname{Spec}(S), X_{\mathbb{Z}_p^{\operatorname{cycl}}}^*).$$

Speculation 4.1.2. ((todo: check: Let Y be a scheme over $\operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}})$). Let \mathfrak{Y} be the formal scheme over $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})$ obtained as the *p*-completion of Y. Let S be a *p*-adically complete $\mathbb{Z}_p^{\operatorname{cycl}}$ -algebra. Then there is a bijection

$$\operatorname{Hom}_{\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})}(\operatorname{Spf}(S),\mathfrak{Y}) \simeq \operatorname{Hom}_{\operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}})}(\operatorname{Spec}(S),Y).$$

))

Definition 4.1.3. Let \mathcal{N}_{ϵ} be the functor sending a *p*-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra *S* to the set of pairs (f, [u]), where

- f is a map $\operatorname{Spf}(S) \to \mathfrak{X}^*$; it's equivalent to a map $\operatorname{Spec}(S) \to X^*_{\mathbb{Z}_p^{\operatorname{cycl}}}$ by Lemma 4.1.1.
- Let \overline{f} : Spec $(S/p) \to X^*_{\mathbb{F}_p}$ be the reduction of Spec $(S) \to X^*_{\mathbb{Z}_p^{cycl}}$. Recall that we have the Hasse section Ha $\in H^0(X^*_{\mathbb{F}_p}, \omega^{\otimes (p-1)})$. It pullbacks to \overline{f}^* Ha $\in H^0(\text{Spec}(S/p), \overline{f}^*\omega^{\otimes (p-1)})$. Then [u] is an equivalence class of sections $u \in H^0(\text{Spec}(S), f^*\omega^{\otimes (1-p)})$ satisfying $u \cdot \overline{f}^*$ Ha $= p^{\epsilon} \in S/p$ under the equivalence relation that $u \sim u'$ if and only if there exists some $h \in S$ such that $u' = u(1 + p^{1-\epsilon}h)$.

Lemma 4.1.4. Then the functor \mathcal{N}_{ϵ} is representable by a formal scheme flat over $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})$. For $\operatorname{Spf}(R) \subset \mathfrak{X}_{\mathbb{Z}_p}^*$, we have

$$\mathcal{N}_{\epsilon} \times_{\mathfrak{X}^*} \operatorname{Spf}(R \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\operatorname{cycl}}) = \operatorname{Spf}((R \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\operatorname{cycl}}) \langle u \rangle / (u \widetilde{\operatorname{Ha}} - p^{\epsilon}))$$

where $\widetilde{\text{Ha}} \in H^0(\text{Spec}(R), \omega^{\otimes (p-1)})$ is a lift of $\text{Ha} \in H^0(\text{Spec}(R/p), \omega^{\otimes (p-1)})$.

Definition 4.1.5. Let $\mathfrak{X}(\epsilon) \to \mathfrak{X}$ be the pullback of $\mathfrak{X}^*(\epsilon) \to \mathfrak{X}^*$ along $\mathfrak{X} \to \mathfrak{X}^*$. Let $\mathfrak{A}(\epsilon) \to \mathfrak{X}(\epsilon)$ be the pullback of $\mathfrak{A} \to \mathfrak{X}$ along $\mathfrak{X}(\epsilon) \to \mathfrak{X}$.

Let \mathcal{X} be the generic fiber of the adic space associated to the formal scheme \mathfrak{X} . Let $\mathcal{X}(\epsilon)$ be the generic fiber of the adic space associated to $\mathfrak{X}(\epsilon)$. Then \mathcal{X} admits an open embedding to the X^{ad} , the adic space associated to the scheme $X_{\mathbb{Q}_p^{\mathrm{cycl}}}$. Let $\mathcal{X}_{\Gamma_s(p^m)}$ be the inverse image of \mathcal{X} under the map $X^{\mathrm{ad}}_{\Gamma_s(p^m)} \to X^{\mathrm{ad}}$.

Remark 4.1.6. ((todo: moduli interpretation of $\mathfrak{X}(\epsilon)$). Should be almost identical to \mathcal{M}_{ϵ} .))

Definition 4.1.7. For a formal scheme \mathfrak{Y} over $\mathbb{Z}_p^{\text{cycl}}$ and $a \in \mathbb{Z}_p^{\text{cycl}}$, we write \mathfrak{Y}/a for $\mathfrak{Y} \times_{\text{Spf}(\mathbb{Z}_p^{\text{cycl}})} \text{Spf}(\mathbb{Z}_p^{\text{cycl}}/a)$.

Definition 4.1.8. For a formal scheme \mathfrak{Y} over $\mathbb{Z}_p^{\text{cycl}}/p$, we write $\mathfrak{Y}^{(p)}$ for the pullback of \mathfrak{Y} along the (absolute) Frobenius $\text{Spf}(\mathbb{Z}_p^{\text{cycl}}/p) \to \text{Spf}(\mathbb{Z}_p^{\text{cycl}}/p)$.

Lemma 4.1.9. We have a natural isomorphism

$$(\mathfrak{X}^*(p^{-1}\epsilon)/p)^{(p)} \simeq \mathfrak{X}^*(\epsilon)/p$$

of formal schemes over $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}}/p)$. Furthermore, by pullback we get the following commutative diagram

$$\begin{array}{cccc} (\mathfrak{A}(p^{-1}\epsilon)/p)^{(p)} & \longrightarrow (\mathfrak{X}(p^{-1}\epsilon)/p)^{(p)} & \longrightarrow (\mathfrak{X}^*(p^{-1}\epsilon)/p)^{(p)} \\ & & \downarrow & & \downarrow \\ & & \downarrow & & \downarrow \\ \mathfrak{A}(\epsilon)/p & \longrightarrow \mathfrak{X}(\epsilon)/p & \longrightarrow \mathfrak{X}^*(\epsilon)/p \end{array}$$

where each vertical map is an isomorphism.

Proof. Let S be a ((discrete? flat)) $(\mathbb{Z}_p^{\text{cycl}}/p)$ -algebra. Then

$$(\mathfrak{X}^*(p^{-1}\epsilon)/p)^{(p)}(S) = (\mathfrak{X}^*(p^{-1}\epsilon)/p)(\mathrm{Fr}_*S),$$

where Fr_*S is the the $(\mathbb{Z}_p^{\operatorname{cycl}}/p)$ -algebra obtained from S by precomposing with $\operatorname{Fr}: \mathbb{Z}_p^{\operatorname{cycl}}/p \to \mathbb{Z}_p^{\operatorname{cycl}}/p$. Each map $\operatorname{Spf}(\operatorname{Fr}_*S) \to \mathfrak{X}^*(p^{-1}\epsilon)/p$ is equivalent to a pair (f, [u]), where

- $f: \operatorname{Spec}(\operatorname{Fr}_*S) \to X^*_{\mathbb{Z}_p^{\operatorname{cycl}}}$ is a map over $\operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}})$.
- $u \in H^0(\operatorname{Spec}(\operatorname{Fr}_*S), f^*\omega^{\otimes(1-p)})$ is a section such that $u \cdot f^*\operatorname{Ha} = p^{p^{-1}\epsilon} \in \operatorname{Fr}_*S$. Note that $(\operatorname{Fr}_*S)/p = \operatorname{Fr}_*S$ since S is defined over $\mathbb{Z}_p^{\operatorname{cycl}}/p$.

Recall that $X^*_{\mathbb{Z}_p^{\text{cycl}}} = X^*_{\mathbb{Z}_p} \times_{\text{Spec}(\mathbb{Z}_p)} \text{Spec}(\mathbb{Z}_p^{\text{cycl}})$, and thus (f, [u]) is equivalent ((todo: should be more precise)) to the following datum

- $f : \operatorname{Spec}(\operatorname{Fr}_*S) \to X^*_{\mathbb{Z}_p}$ is a map over $\operatorname{Spec}(\mathbb{Z}_p)$.
- ((todo: Check the reduction of u)) $u \in H^0(\operatorname{Spec}(\operatorname{Fr}_*S), f^*\omega^{\otimes(1-p)})$ is a section such that $u \cdot f^*\operatorname{Ha} = p^{p^{-1}\epsilon} \in \operatorname{Fr}_*S$.

Note that the Frobenius on $\mathbb{Z}_p/p = \mathbb{F}_p$ is simply the identity, and thus the map $\operatorname{Spec}(\operatorname{Fr}_*S) \to \operatorname{Spec}(\mathbb{Z}_p)$ is identical to $\operatorname{Spec}(S) \to \operatorname{Spec}(\mathbb{Z}_p)$. But under this identification the element $p^{p^{-1}\epsilon} \in \operatorname{Fr}_*S$ corresponds to $p^{\epsilon} \in S$. Then $f : \operatorname{Spec}(\operatorname{Fr}_*S) \to X^*_{\mathbb{Z}_p}$ can be reinterpreted as a map $g : \operatorname{Spec}(S) \to X^*_{\mathbb{Z}_p}$ over $\operatorname{Spec}(\mathbb{Z}_p)$. We write v = u for clarity. The section v then satisfies $v \cdot g^*\operatorname{Ha} = p^{\epsilon} \in S$. The pair (g, [v]) then corresponds to a map $\operatorname{Spf}(S) \to \mathfrak{X}^*(\epsilon)/p$ over $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}}/p)$.

Lemma 4.1.10. The Frobenius map $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}}/p) \to \operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}}/p)$ induces the following commutative diagram

$$\begin{aligned} \mathfrak{A}(p^{-1}\epsilon)/p & \longrightarrow \mathfrak{X}(p^{-1}\epsilon)/p & \longrightarrow \mathfrak{X}^*(p^{-1}\epsilon)/p \\ \downarrow & \downarrow & \downarrow \\ (\mathfrak{A}(p^{-1}\epsilon)/p)^{(p)} & \longrightarrow (\mathfrak{X}(p^{-1}\epsilon)/p)^{(p)} & \longrightarrow (\mathfrak{X}^*(p^{-1}\epsilon)/p)^{(p)} \end{aligned}$$

Proof. This follows from the universal property of pullback.

Remark 4.1.11. ((todo: Explain the moduli interpretation of

$$\mathfrak{X}^*(p^{-1}\epsilon)/p \to (\mathfrak{X}^*(p^{-1}\epsilon)/p)^{(p)} \simeq \mathfrak{X}^*(\epsilon)/p.$$

))

Speculation 4.1.12. ((todo: check: Let S be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let $f : \text{Spf}(S) \to \mathfrak{X}$ be a map over $\text{Spf}(\mathbb{Z}_p^{\text{cycl}})$. Let $A \to \text{Spec}(S)$ be the corresponding Abelian scheme. Suppose $A \to \text{Spec}(S)$ satisfies strong $O(1, \epsilon)$. Let C be the strong canonical subgroup of $A \to \text{Spec}(S)$ of level 1. Then B = A/C satisfies weak $O(1, \epsilon)$. ()

Speculation 4.1.13. ((todo: cf. [Wed99]))

Lemma 4.1.14. There is a unique commutative diagram

$$\begin{array}{cccc} \mathfrak{A}(p^{-1}\epsilon) & \longrightarrow \mathfrak{X}(p^{-1}\epsilon) & \longrightarrow \mathfrak{X}^*(p^{-1}\epsilon) \\ & & \downarrow & & \downarrow \\ \mathfrak{A}(\epsilon) & \longrightarrow \mathfrak{X}(\epsilon) & \longrightarrow \mathfrak{X}^*(\epsilon) \end{array}$$

that is identified with the following commutative diagram from Lemma 4.1.9 and Lemma 4.1.10, after modulo $p^{1-\epsilon}$.

$$\begin{split} \mathfrak{A}(p^{-1}\epsilon)/p & \longrightarrow \mathfrak{X}(p^{-1}\epsilon)/p & \longrightarrow \mathfrak{X}^*(p^{-1}\epsilon)/p \\ \downarrow & \downarrow & \downarrow \\ (\mathfrak{A}(p^{-1}\epsilon)/p)^{(p)} & \longrightarrow (\mathfrak{X}(p^{-1}\epsilon)/p)^{(p)} & \longrightarrow (\mathfrak{X}^*(p^{-1}\epsilon)/p)^{(p)} \\ \downarrow & \downarrow & \downarrow \\ \mathfrak{A}(\epsilon)/p & \longrightarrow \mathfrak{X}(\epsilon)/p & \longrightarrow \mathfrak{X}^*(\epsilon)/p \end{split}$$

Proof. ((todo: finish the proof: The map $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}(\epsilon)$ comes from the moduli interpretation, the weak canonical subgroup, and the Hasse invariant. Then $\mathfrak{A}(p^{-1}\epsilon) \to \mathfrak{A}(\epsilon)$ is obtained by base-change. The extension to $\mathfrak{X}^*(p^{-1}\epsilon) \to \mathfrak{X}^*(\epsilon)$ is done using Hartog's extension principle.))

We first construct the map $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}(\epsilon)$. Let S be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let (f, [u]) be a pair where

- $f: \operatorname{Spf}(S) \to \mathfrak{X}$ is a map of formal schemes over $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})$; its equivalent to a map $f: \operatorname{Spec}(S) \to X_{\mathbb{Z}_p^{\operatorname{cycl}}}$.
- $u \in H^0(\operatorname{Spec}(S), f^* \omega^{\otimes (1-p)})$ is a section such that $u \cdot \overline{f}^* \operatorname{Ha} = p^{p^{-1}\epsilon} \in S/p$.

The map $f : \operatorname{Spec}(S) \to X_{\mathbb{Z}_p^{\operatorname{cycl}}}$ gives an Abelian scheme $A \to \operatorname{Spec}(S)$ ((todo: with principal polarization and level K^p structure)). We claim that $A \to \operatorname{Spec}(S)$ satisfies strong $O(1, \epsilon)$, i.e. $\operatorname{Ha}(A_1/\operatorname{Spec}(S_1))^p$ divides p^{ϵ} . This follows from

$$p^{p^{-1}\epsilon} = u \cdot \overline{f}^* \operatorname{Ha} = u \cdot \operatorname{Ha}(A_1/\operatorname{Spec}(S_1)).$$

Let $C \subset A[p]$ be the strong canonical subgroup of level 1. We get an Abelian scheme $A/C \to \operatorname{Spec}(S)$ ((todo: explain: equipped with induced polarization and level structure: use totally isotropic)), which corresponds to a map $g: \operatorname{Spec}(S) \to X_{\mathbb{Z}_p^{\operatorname{cycl}}}$. This gives a map $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}$. We will show next that it can be factored as $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}(\epsilon) \to \mathfrak{X}$.

((seems wrong: Then we declare that the pair (f, [u]) gets mapped to the pair $(g, [u^p])$.))

((seems wrong: By Speculation 4.1.12, the quotient $A/C \to \operatorname{Spec}(S)$ satisfies weak $O(1, \epsilon)$, i.e. there exists a section $v \in H^0(\operatorname{Spec}(S), \overline{g}^* \omega^{\otimes (1-p)})$ such that $v \cdot \overline{g}^* \operatorname{Ha} = p^{\epsilon}$. Then we declare that the pair (f, [u]) gets mapped to the pair (g, [v]). We need to check that [v] is well-defined. ((wrong!)) It suffices to show that $\overline{g}^* \operatorname{Ha} = \operatorname{Ha}((A/C)_1/S_1)$ is not a zero-divisor. Otherwise, for every geometric point x of $\operatorname{Spec}(S)$, the Abelian scheme $(A/C)_x$ is not ordinary. This contradicts Speculation 4.1.13. Therefore we obtain a well-defined map $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}(\epsilon)$.))

Let B = A/C. We have

$$p^{\epsilon} = u^{p} \cdot \operatorname{Ha}(A_{1}/\operatorname{Spec}(S_{1}))^{p} = u^{p} \cdot \operatorname{Ha}(A_{1}^{(p)}/\operatorname{Spec}(S_{1}))$$

Modulo $p^{1-\epsilon}$,

$$p^{\epsilon} = u^{p} \cdot \operatorname{Ha}(A_{1-\epsilon}^{(p)}/\operatorname{Spec}(S_{1-\epsilon})) = u^{p} \cdot \operatorname{Ha}(B_{1-\epsilon}/\operatorname{Spec}(S_{1-\epsilon}))$$

Thus there is $v \in H^0(\operatorname{Spec}(S), g^* \omega^{\otimes (1-p)})$ such that $v = u^p \mod p^{1-\epsilon}$ and $v \cdot \operatorname{Ha}(B_1/\operatorname{Spec}(S_1)) = p^{\epsilon} \mod p^{1-\epsilon}$. Hence

$$v \cdot \operatorname{Ha}(B_1/\operatorname{Spec}(S_1)) = p^{\epsilon} + p^{1-\epsilon}t = p^{\epsilon}(1+p^{1-2\epsilon}t) \in S/p$$

for some $t \in S$.

((check: $1 + p^{1-2\epsilon}t$ is invertible in S)) Then

$$(1+p^{1-2\epsilon}t)^{-1}v \cdot \operatorname{Ha}(B_1/\operatorname{Spec}(S_1)) = p^{\epsilon} \in S/p.$$

(This shows that B is weak $O(1,\epsilon)$.) We claim that the pair (f,[u]) gets mapped to the pair $(g,[(1 + p^{1-2\epsilon}t)^{-1}v])$.

- First check this map is well-defined.
 - Any choice $u' \in [u]$ leads to $u^p = (u')^p \mod p^{1-\epsilon}$.
 - Now choose another lift $v + p^{1-\epsilon}v'$ of v.

•

Another attempt at constructing the factorization $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}(\epsilon) \to \mathfrak{X}$.

• We already know that B is weak $O(1, \epsilon)$, i.e. there exists a section $v \in H^0(\operatorname{Spec}(S/p), \overline{g}^* \omega^{\otimes (1-p)})$ such that

$$v \cdot \operatorname{Ha}(B_1/S_1) = p^{\epsilon} \mod p.$$

• Modulo $p^{1-\epsilon}$,

$$p^{\epsilon} = v \cdot \operatorname{Ha}(B_{1-\epsilon}/S_{1-\epsilon}) = v \cdot \operatorname{Ha}(A_{1-\epsilon}^{(p)}/S_{1-\epsilon}) = u^{p} \cdot \operatorname{Ha}(A_{1-\epsilon}^{(p)}/S_{1-\epsilon}) \mod p^{1-\epsilon}$$

• Then

$$(v-u^p) \cdot \operatorname{Ha}(A_{1-\epsilon}^{(p)}/S_{1-\epsilon}) = 0 \mod p^{1-\epsilon}.$$

• Maybe $\operatorname{Ha}(A_{1-\epsilon}^{(p)}/S_{1-\epsilon})$ is not a zero-divisor in $S/p^{1-\epsilon}$.

• Then $v = u^p \mod p^{1-\epsilon}$.

Another attempt at constructing the factorization $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}(\epsilon) \to \mathfrak{X}$.

- Let $\operatorname{Spf}(R) \subset \mathfrak{X}$ on which ω is trivial.
- Choose a lift $\widetilde{\text{Ha}} \in H^0(\text{Spec}(R), \omega^{\otimes (p-1)})$ of $\text{Ha} \in H^0(\text{Spec}(R/p), \omega^{\otimes (p-1)})$.
- We want

$$\operatorname{Spf}(R\langle u \rangle / (u \cdot \operatorname{Ha} - p^{\epsilon}))$$

$$\operatorname{Spf}(R\langle u \rangle / (u \cdot \widetilde{\operatorname{Ha}} - p^{p^{-1}\epsilon})) \longrightarrow \operatorname{Spf}(R).$$

In other words,

$$\frac{R\langle u \rangle / (u \cdot \widetilde{Ha} - p^{\epsilon})}{\left(1 + \widetilde{Ha} - p^{p^{-1}\epsilon} \right)} \xleftarrow{R}$$

We need to show that $\mathfrak{X}(p^{-1}\epsilon) \to \mathfrak{X}(\epsilon)$ extends to $\mathfrak{X}^*(p^{-1}\epsilon) \to \mathfrak{X}^*(\epsilon)$ ((cf. the remark in Lemma 4.1.4)).

- We'd like to apply Lemma 2.2.6 for the case $g \ge 2$.
- Let $\operatorname{Spf}(R) \subset \mathfrak{X}_{\mathbb{Z}_p}^*$ ((such that $\omega^{\otimes (p-1)}$ is trivial on $\operatorname{Spf}(R)$)). This gives an affine open $\operatorname{Spf}(R \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\operatorname{cycl}})$ of \mathfrak{X}^* , and such affines cover \mathfrak{X}^* .
- Check that R is a topologically finitely generated flat p-adically complete \mathbb{Z}_p -algebra, and that R/p is normal.
- Check that $\operatorname{Ha} \in H^0(\operatorname{Spec}(R/p), \omega^{\otimes (p-1)}) \simeq R/p$ not a zero-divisor, where ω is the natural (ample) line bundle on $X^*_{\mathbb{F}_n}$.
 - Spec(R/p) is an affine open in $X^*_{\mathbb{F}_p}$ as Spec(R) is an affine open of $X^*_{\mathbb{Z}_p}$.
 - We have inclusion of opens

$$X_{\mathbb{F}_p}^{\mathrm{ord}} \subset X_{\mathbb{F}_p} \subset X_{\mathbb{F}_p}^*.$$

The first inclusion is dense by Lemma ??, and the second is dense by the property of minimal compactification ((todo: add reference)).

– Thus the intersection

$$\operatorname{Spec}(R/p) \cap X_{\mathbb{F}_n}^{\operatorname{orc}}$$

is non-empty.

- Therefore Ha is not a zero-divisor since it is non-zero at a point.

• We need a map

$$\mathfrak{X}^*(p^{-1}\epsilon) \times_{\mathfrak{X}^*} \operatorname{Spf}(R \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\operatorname{cycl}}) \to \mathfrak{X}^*(\epsilon) \times_{\mathfrak{X}^*} \operatorname{Spf}(R \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\operatorname{cycl}})$$

- Choose a lift $\widetilde{\text{Ha}} \in H^0(\text{Spec}(R), \omega^{\otimes (p-1)}) \simeq R$ of $\text{Ha} \in R/p$.
- Let $S_{\epsilon} = (R \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\text{cycl}}) \langle u \rangle / (u \cdot \widetilde{\text{Ha}} p^{\epsilon})$. Let $S_{p^{-1}\epsilon} = (R \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\text{cycl}}) \langle u \rangle / (u \cdot \widetilde{\text{Ha}} p^{p^{-1}\epsilon})$. Then we need a map

$$\begin{aligned} \operatorname{Spf}(S_{p^{-1}\epsilon}) & \dashrightarrow & \operatorname{Spf}(S_{\epsilon}) \\ \downarrow & \downarrow \\ \mathfrak{X}^*(p^{-1}\epsilon) & \dashrightarrow & \mathfrak{X}^*(\epsilon) \end{aligned}$$

• Consider the pullback diagram

$$\begin{array}{ccc} U & \longrightarrow \operatorname{Spec}(R/p) \\ \downarrow & & \downarrow \\ X_{\mathbb{F}_p} & \longrightarrow X^*_{\mathbb{F}_p}. \end{array}$$

Then U is an open in $\operatorname{Spec}(R/p)$. Let Y be the complement of U in $\operatorname{Spec}(R/p)$.

- Check that Y has codimension ≥ 2 in Spec(R/p). This follows from that $Y \cap X_{\mathbb{F}_p} = \emptyset$ and that boundary of $X^*_{\mathbb{F}_p}$ has codimension $g \geq 2$.
- Let Z be the preimage of Y in $Spf(S_{\epsilon})$. Then Lemma 2.2.6 shows that the natural map

$$H^0(\mathrm{Spf}(S_{\epsilon}), \mathcal{O}_{\mathrm{Spf}(S_{\epsilon})}) \to H^0(\mathrm{Spf}(S_{\epsilon}) \setminus Z, \mathcal{O}_{\mathrm{Spf}(S_{\epsilon})})$$

is an isomorphism.

• Define \mathfrak{U} by the pullback diagram

$$\begin{array}{ccc} \mathfrak{U} & \longrightarrow \operatorname{Spf}(R \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{Z}_p^{\operatorname{cycl}}) \\ & & \downarrow \\ \mathfrak{X} & \longrightarrow \mathfrak{X}^*. \end{array}$$

• Now we need to construct

$$\begin{array}{ccc} \mathfrak{X}(p^{-1}\epsilon) \times_{\mathfrak{X}} \mathfrak{U} \longrightarrow \operatorname{Spf}(S_{p^{-1}\epsilon}) \\ & & \downarrow \\ \mathfrak{X}(\epsilon) \times_{\mathfrak{X}} \mathfrak{U} \longrightarrow \operatorname{Spf}(S_{\epsilon}). \end{array}$$

• We claim that $\mathfrak{X}(\epsilon) \times_{\mathfrak{X}} \mathfrak{U} = \operatorname{Spf}(S_{\epsilon}) \backslash Z$.

4.2. The anti-canonical tower of level Γ_s .

Construction 4.2.1. Let $m \ge 1$.

We first construct a map $\mathfrak{X}(p^{-m}\epsilon) \to \mathfrak{X}$. Let S be a p-adically complete flat $\mathbb{Z}_p^{\text{cycl}}$ -algebra. Let $\text{Spf}(S) \to \mathfrak{X}(p^{-m}\epsilon)$ be a map over $\text{Spf}(\mathbb{Z}_p^{\text{cycl}})$. It corresponds to a pair (f, [u]) where

- $f: \operatorname{Spec}(S) \to X_{\mathbb{Z}_p^{\operatorname{cycl}}}$ is a map over $\operatorname{Spec}(\mathbb{Z}_p^{\operatorname{cycl}})$.
- $u \in H^0(\operatorname{Spec}(S), f^*\omega^{\otimes (1-p)})$ is a section such that $u \cdot \overline{f}^* \operatorname{Ha} = p^{p^{-m}\epsilon}$ in S/p.

The map $f: \operatorname{Spec}(S) \to X_{\mathbb{Z}_p^{\operatorname{cycl}}}$ gives an Abelian scheme $A \to \operatorname{Spec}(S)$. The section u shows that $A \to \operatorname{Spec}(S)$ satisifies strong $O(m, \epsilon)$, and thus has a strong canonical subgroup $C_m \subset A[p^m]$ of level m. The Abelian scheme $A/C_m \to \operatorname{Spec}(S)$ has induced principal polarization and level structure, and thus corresponds to a map $\operatorname{Spec}(S) \to X_{\mathbb{Z}_p^{\operatorname{cycl}}}$, which gives a map $\operatorname{Spf}(S) \to \mathfrak{X}$ over $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})$.

Passing to the adic fiber (i.e. the generic fiber of the associated adic space), we get a map $\mathcal{X}(p^{-m}\epsilon) \to \mathcal{X}$ of adic spaces. Now we construct a factorization $\mathcal{X}(p^{-m}\epsilon) \to \mathcal{X}_{\Gamma_s(p^m)} \to \mathcal{X}$, where the map $\mathcal{X}_{\Gamma_s(p^m)} \to \mathcal{X}$ is given by the moduli interpretation " $(A, D) \mapsto A/D$ ".

((todo: construct the factorization))

Lemma 4.2.2. For each $m \ge 1$, the $\mathcal{X}(p^{-m}\epsilon) \to \mathcal{X}_{\Gamma_s(p^m)}$ extends uniquely to $\mathcal{X}^*(p^{-m}\epsilon) \to \mathcal{X}^*_{\Gamma_s(p^m)}$, and both maps are open immersions of adic spaces. Moreover, the following diagram

$$\begin{array}{ccc} \mathcal{X}^*(p^{-m-1}\epsilon) & \longrightarrow \mathcal{X}^*_{\Gamma_{\mathrm{s}}(p^{m+1})} \\ & & \downarrow \\ & & \downarrow \\ \mathcal{X}^*(p^{-m}\epsilon) & \longrightarrow \mathcal{X}^*_{\Gamma_{\mathrm{s}}(p^m)} \end{array}$$

is a pullback diagram for all $m \ge 1$, where the vertical map on the left is induced from the map $\mathfrak{X}(p^{-m-1}\epsilon) \to \mathfrak{X}(p^{-m}\epsilon)$, cf. Lemma 4.1.14.

Proof. ((todo: write down the proof))

- Extension to minimal compactification:
- Open immersion:
 - The map $\theta: X_{\mathbb{O}_{c}^{cycl}} \to X_{\mathbb{O}_{c}^{cycl}}$ defined by $A \mapsto A/A[p^m]$ is an isomorphism.

– The following diagram

commutes.

- So the composition $\mathcal{X}^*(p^{-m}\epsilon) \to \mathcal{X}_{\Gamma_s(p^m)} \to \mathcal{X}$ is an open immersion.
- The map $\mathcal{X}_{\Gamma_{s}(p^{m})} \to \mathcal{X}$ is finite étale.
- Thus the map $\mathcal{X}(p^{-m}\epsilon) \to \mathcal{X}_{\Gamma_{s}(p^{m})}$ is an open immersion.
- Then pass to minimal compactification as follows.
- We'd like to apply Lemma 2.2.6.

• Pullback diagram:

First show that

$$\begin{array}{ccc} \mathcal{X}(p^{-m-1}\epsilon) & \longrightarrow \mathcal{X}_{\Gamma_{\mathrm{s}}(p^{m+1})} \\ & & \downarrow \\ & & \downarrow \\ \mathcal{X}(p^{-m}\epsilon) & \longrightarrow \mathcal{X}_{\Gamma_{\mathrm{s}}(p^{m})} \end{array}$$

is pullback diagram.

- Commutativity of the diagram:
- It is a pullback since both vertical maps are finite étale of degree $p^{g(g+1)/2}$.
- Then pass to minimal compactification.

Definition 4.2.3. Let $\mathcal{X}_{\Gamma_s(p)}(\epsilon)$ be the pullback of $\mathcal{X}(\epsilon)$ along $\mathcal{X}_{\Gamma_s(p)} \to \mathcal{X}$.

Lemma 4.2.4. The following diagram

$$\begin{array}{c} \mathcal{X}(p^{-1}\epsilon) \longrightarrow \mathcal{X}_{\Gamma_{s}(p)}(\epsilon) \\ \downarrow \qquad \qquad \downarrow \\ \mathcal{X}(\epsilon) \xrightarrow{\mathrm{id}} \mathcal{X}(\epsilon) \end{array}$$

commutes. Moreover, the map $\mathcal{X}(p^{-1}\epsilon) \to \mathcal{X}_{\Gamma_s(p)}(\epsilon)$ is an open immersion, and the image of $\mathcal{X}(p^{-1}\epsilon)$ in $\mathcal{X}_{\Gamma_s(p)}(\epsilon)$ is both open and closed.

Definition 4.2.5. ((todo: how to make this statement precise? do we actually need this?: Let $\mathcal{X}_{\Gamma_s(p)}(\epsilon)_a$ be the open and closed subset of $\mathcal{X}_{\Gamma_s(p)}(\epsilon)$ "parametrizing those $D \subset \mathcal{A}(\epsilon)[p]$ with $D \cap C = \{0\}$ ". ())

Let $\mathcal{X}_{\Gamma_s(p)}(\epsilon)_a$ be the image of $\mathcal{X}(p^{-1}\epsilon)$ in $\mathcal{X}_{\Gamma_s(p)}(\epsilon)$. Let $\mathcal{X}^*_{\Gamma_s(p)}(\epsilon)_a$ be the image of $\mathcal{X}^*(p^{-1}\epsilon)$ in $\mathcal{X}^*_{\Gamma_s(p)}(\epsilon)$. Let $\mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a$ be the pullback of $\mathcal{X}^*_{\Gamma_s(p)}(\epsilon)_a$ along $\mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon) \to \mathcal{X}^*_{\Gamma_s(p)}(\epsilon)$.

Remark 4.2.6. $\mathcal{X}^*_{\Gamma_s(p)}(\epsilon)_a$ is both open and closed in $\mathcal{X}^*_{\Gamma_s(p)}(\epsilon)$.

Lemma 4.2.7. For *m* sufficiently large, $\mathcal{X}^*_{\Gamma_e(p^m)}(\epsilon)_a$ is affinoid.

Proof. ((todo: write down the proof))

- There exists an integer $m \ge 0$ such that $H^i(X^*_{\mathbb{Z}_p}, \omega^{\otimes p^m(p-1)}) = 0$ for all $i \ge 1$, since ω is an ample line bundle on $X^*_{\mathbb{Z}_m}$.
- We can find a lift $s \in H^0(X^*_{\mathbb{Z}_p}, \omega^{\otimes p^m(p-1)})$ lifting $\operatorname{Ha}^{p^m} \in H^0(X^*_{\mathbb{F}_p}, \omega^{\otimes p^m(p-1)})$. ((todo: add a proof; should follows from vanishing of first cohomology; maybe use a short exact sequence of quasi-coherent \mathcal{O}_X -modules, and then pass to a long exact sequence))
- The condition $|\text{Ha}| \ge |p|^{p^{-m_{\epsilon}}}$ is equivalent to $|s| \ge |p|^{\epsilon}$.
- The condition defines an affinoid space $\mathcal{X}^*(p^{-m}\epsilon) \simeq \mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a$.

Lemma 4.2.8. There exists a unique perfectoid space $\mathcal{X}^*_{\Gamma_s(p^\infty)}(\epsilon)_a$ such that

$$\mathcal{X}^*_{\Gamma_{\mathrm{s}}(p^{\infty})}(\epsilon)_a \sim \lim_m \mathcal{X}^*_{\Gamma_{\mathrm{s}}(p^m)}(\epsilon)_a.$$

Similar results hold for $\mathcal{X}_{\Gamma_{s}(p^{\infty})}(\epsilon)_{a}$ and $\mathcal{A}_{\Gamma_{s}(p^{\infty})}(\epsilon)_{a}$.

Proof. ((todo: use tilting))

• Define

$$\mathfrak{X}^*_{\Gamma_{\mathrm{s}}(p^{\infty})}(\epsilon)_a = \lim_m \mathfrak{X}(p^{-m}\epsilon)$$

where the inverse limit is taken in the category of formal schemes over $\text{Spf}(\mathbb{Z}_p^{\text{cycl}})$. Note that the transition maps are finite.

- Let $\operatorname{Spf}(R_{m_0}) \subset \mathfrak{X}(p^{-m_0}\epsilon)$ be affine. Let $\operatorname{Spf}(R_m) \subset \mathfrak{X}(p^{-m}\epsilon)$ be the preimage of $\operatorname{Spf}(R_{m_0})$ for $m \geq m_0$.
- We get an affine open $\operatorname{Spf}(R_{\infty})$ of $\mathfrak{X}^*_{\Gamma_s(p^{\infty})}(\epsilon)_a$, where R_{∞} is the *p*-adic completion of $\operatorname{colim}_m R_m$. Then R_{∞} is flat over $\mathbb{Z}_p^{\operatorname{cycl}}$.
- The transition map $R_m/p^{1-\epsilon} \to R_{m+1}/p^{1-\epsilon}$ agrees with the relative Frobenius. The absolute Frobenius then induces an isomorphism

$$R_{\infty}/p^{(1-\epsilon)/p} = \operatorname{colim}_{m} R_{m+1}/p^{(1-p)/p} \simeq \operatorname{colim}_{m} R_{m}/p^{1-\epsilon} = R_{\infty}/p^{1-\epsilon}.$$

- Thus R^a_{∞} is a perfectoid $\mathbb{Z}_p^{\text{cycl},a}$ -algebra, cf. [Sch12, Definition 5.1.(ii)].
- Then $R_{\infty}[1/p]$ is a perfectoid $\mathbb{Q}_p^{\text{cycl}}$ -algebra, cf. [Sch12, Lemma 5.6].
- Then the generic fiber of $\mathfrak{X}^*_{\Gamma_s(p^\infty)}(\epsilon)_a$ is a perfectoid space $\mathcal{X}^*_{\Gamma_s(p^\infty)}(\epsilon)_a$ over $\mathbb{Q}_p^{\text{cycl}}$, and

$$\mathcal{X}^*_{\Gamma_{\mathrm{s}}(p^{\infty})}(\epsilon)_a \sim \lim_m \mathcal{X}^*_{\Gamma_{\mathrm{s}}(p^m)}(\epsilon)_a$$

cf. [SW13, Definition 2.4.1, Proposition 2.4.2].

• Uniqueness follows from [SW13, Proposition 2.4.5].

Lemma 4.2.9. The tilt $\mathcal{X}^*_{\Gamma_s(p^{\infty})}(\epsilon)^{\flat}_a$ identifies naturally with the open subset $\mathcal{X}'^{*perf}(\epsilon) \subset \mathcal{X}'^{*perf}$ where $|\mathrm{Ha}| \geq |t|^{\epsilon}$. The similar result holds for \mathcal{A} .

Proof. ((todo: split the proof))

- We define $\mathfrak{X}^{\prime*}(\epsilon) \to \mathfrak{X}^{\prime*}$ in a way similar to $\mathfrak{X}^*(\epsilon) \to \mathfrak{X}^*$, parametrizing sections $u \in \omega^{\otimes (1-p)}$ such that $u \cdot \operatorname{Ha} = t^{\epsilon}$.
- We have the map

$$\mathfrak{X}^{\prime*}(p^{-1}\epsilon) \to \mathfrak{X}^{\prime*}(\epsilon)$$

given by the raltive Frobenius.

- The inverse limit $\lim_m \mathfrak{X}'^*(p^{-m}\epsilon)$ is representable by a perfect flat formal scheme over $\mathbb{F}_p[[t^{1/(p-1)p^{\infty}}]]$ which is naturally the same as $\mathfrak{X}'^*(\epsilon)^{\text{perf}}$.
- Its generic fiber is thus a perfected space over $\mathbb{F}_p((t^{1/(p-1)p^{\infty}}))$, that is identified with the open subset of \mathcal{X}'^{*perf} where $|\mathrm{Ha}| \geq |t|^{\epsilon}$.
- We have a canonical identification

$$\mathfrak{X}^{\prime*}(p^{-m}\epsilon)/t^{1-\epsilon} \simeq \mathfrak{X}^*(p^{-m}\epsilon)/p^{1-\epsilon}$$

compatible with transition maps.

• For an open affine $\operatorname{Spf}(R_{m_0}) \subset \mathfrak{X}^*(p^{-m}\epsilon)$ with preimages $\operatorname{Spf}(R_m)$, we get affine opens $\operatorname{Spf}(S_m) \subset \mathfrak{X}'^*(p^{-m}\epsilon)$, with

$$S_m/t^{1-\epsilon} = R_m/p^{1-\epsilon}.$$

- Let R_{∞} be the *p*-adic completion of $\operatorname{colim}_m R_m$. Let S_{∞} be the *t*-adic completion of $\operatorname{colim}_m S_m$.
- Then $\operatorname{Spf}(R_{\infty}) \subset \mathfrak{X}_{\Gamma_{s}(p^{\infty})}(\epsilon)_{a}$ and $\operatorname{Spf}(S_{\infty}) \subset \mathfrak{X}'^{*}(\epsilon)^{\operatorname{perf}}$ give corresponding open subsets, and

$$R_{\infty}/p^{1-\epsilon} = \operatorname{colim}_m R_m/p^{1-\epsilon} = \operatorname{colim}_m S_m/t^{1-\epsilon} = S_{\infty}/t^{1-\epsilon}$$

• It follows that $R_{\infty}[1/p]$ and $S_{\infty}[1/t]$ are tilts by [Sch12, Theorem 5.2].

Lemma 4.2.10. The space $\mathcal{X}^*_{\Gamma_{\epsilon}(p^{\infty})}(\epsilon)_a$ is affinoid.

Proof. ((todo: use tilting))

- It suffices to check for the tilts.
- The open subset $\mathcal{X}^{\prime*}(\epsilon) \subset \mathcal{X}^{\prime*}$ given by $|\mathrm{Ha}| \geq |\epsilon|^{\epsilon}$ is affinoid.

4.3. Lifting to level Γ_1 .

4.3.1. Specialized version of Tate's normalized trace.

Lemma 4.3.1. Let $\mathfrak{X}_{\Gamma_s(p^\infty)}(\epsilon)_a$ be the formal scheme over $\operatorname{Spf}(\mathbb{Z}_p^{\operatorname{cycl}})$ defined as

$$\mathfrak{X}_{\Gamma_{\mathrm{s}}(p^{\infty})}(\epsilon)_a = \lim_m \mathfrak{X}(p^{-m}\epsilon).$$

Let $0 \le m \le m'$. Then

(1) The maps

$$1/p^{(m'-m)g(g+1)/2}\mathrm{tr}:\mathcal{O}_{\mathfrak{X}(p^{-m'}\epsilon)}[1/p]\to\mathcal{O}_{\mathfrak{X}(p^{-m}\epsilon)}[1/p]$$

are compatible for varying m', and thus induces a map

$$\overline{\operatorname{tr}}_m : \lim_{m'} \mathcal{O}_{\mathfrak{X}(p^{-m'}\epsilon)}[1/p] \to \mathcal{O}_{\mathfrak{X}(p^{-m}\epsilon)}[1/p].$$

(2) The image of $\overline{\mathrm{tr}}_m$ is contained in $p^{-C_m}\mathcal{O}_{\mathfrak{X}(p^{-m}\epsilon)}$ for some constant C_m , with $C_m \to 0$ as $m \to +\infty$. Thus $\overline{\mathrm{tr}}_m$ extends by continuity to a map

$$\overline{\operatorname{tr}}_m: \mathcal{O}_{\mathfrak{X}_{\Gamma_{\mathfrak{s}}(p^{\infty})}(\epsilon)_a}[1/p] \to \mathcal{O}_{\mathfrak{X}(p^{-m}\epsilon)}[1/p],$$

called Tate's normalized trace.

(3) For every $x \in \mathcal{O}_{\mathfrak{X}_{\Gamma_{s}(p^{\infty})}(\epsilon)_{a}}[1/p]$, we have

$$x = \lim_{m \to +\infty} \overline{\mathrm{tr}}_m(x).$$

Proof. Omitted.

4.3.2. A general result.

Situation 4.3.2. Let an integer $m \geq 1$ which is sufficiently large such that $\mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a$ is affinoid, cf. Lemma 4.2.7. Let $\mathcal{Y}_m^* \to \mathcal{X}_{\Gamma_s(p^m)}^*(\epsilon)_a$ be a finite morphism. Let $\mathcal{Y}_m \to \mathcal{X}_{\Gamma_s(p^m)}(\epsilon)_a$ be the pullback of $\mathcal{Y}_m^* \to \mathcal{X}_{\Gamma_s(p^m)}^*(\epsilon)_a$ along $\mathcal{X}_{\Gamma_s(p^m)}(\epsilon)_a \to \mathcal{X}_{\Gamma_s(p^m)}^*(\epsilon)_a$. Assume that

- (1) The map $\mathcal{Y}_m \to \mathcal{X}_{\Gamma_s(p^m)}(\epsilon)_a$ is finite étale.
- (2) \mathcal{Y}_m^* is normal.
- (3) None of the irreducible components of \mathcal{Y}_m^* is mapped into the boundary of $\mathcal{X}_{\Gamma_s(p^m)}^*(\epsilon)_a$.

For $m' \ge m$, define $\mathcal{Y}_{m'}^* \to \mathcal{X}_{\Gamma_{\mathrm{s}}(p^{m'})}^*(\epsilon)_a$ to be the ((todo: normalization??)) pullback of $\mathcal{Y}_m^* \to \mathcal{X}_{\Gamma_{\mathrm{s}}(p^m)}^*(\epsilon)_a$ along $\mathcal{X}^*_{\Gamma_s(p^{m'})}(\epsilon)_a \to \mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a$. Define $\mathcal{Y}_{m'} \to \mathcal{X}_{\Gamma_s(p^{m'})}(\epsilon)_a$ by pullback. Let \mathcal{Y}_∞ be the pullback of \mathcal{Y}_m to $\mathcal{X}_{\Gamma_{s}(p^{\infty})}(\epsilon)_{a}$, which exists as $\mathcal{Y}_{m} \to \mathcal{X}_{\Gamma_{s}(p^{m})}(\epsilon)_{a}$ is finite étale.

Since every $\mathcal{X}^*_{\Gamma_{\mathrm{s}}(p^{m'})}(\epsilon)_a$ is affinoid, each $\mathcal{Y}^*_{m'}$ is affinoid. We write $\mathcal{Y}^*_{m'} = \mathrm{Spa}(S_{m'}, S^+_{m'})$. ((todo: scholze says $S_{m'}^+ = S_{m'}^\circ??$))

Lemma 4.3.3. In the Situation 4.3.2, we have

(1) For all $m' \ge m$,

$$S_{m'}^+ = H^0(\mathcal{Y}_{m'}, \mathcal{O}_{\mathcal{Y}_{m'}}^+).$$

(2) The map

$$\operatorname{colim}_{m'} S^+_{m'} \to H^0(\mathcal{Y}_\infty, \mathcal{O}^+_{\mathcal{Y}_\infty})$$

is injective with dense image. Moreover, there is a canonical continuous retraction

$$H^0(\mathcal{Y}_{\infty}, \mathcal{O}_{\mathcal{Y}_{\infty}}) \to S_{m'}.$$

(3) Assume that $S_{\infty} = H^0(\mathcal{Y}_{\infty}, \mathcal{O}_{\mathcal{Y}_{\infty}})$ is a perfectoid $\mathbb{Q}_p^{\text{cycl}}$ -algebra. Then

$$\mathcal{V}^*_{\infty} = \operatorname{Spa}(S_{\infty}, S^+_{\infty})$$

where $S_{\infty}^{+} = S_{\infty}^{\circ}$, is an affinoid perfectoid space over $\mathbb{Q}_{p}^{\text{cycl}}$, and

$$\mathcal{V}^*_{\infty} \sim \lim_{m'} \mathcal{Y}^*_{m'},$$

and S_{∞}^+ is the *p*-adic completion of $\operatorname{colim}_{m'} S_{m'}^+$.

Proof. Proof of (1). By replacing m with m', it sufficies to prove the claim for m' = m. The desired isomorphism is automatic if we have the following isomorphism

$$S_m \simeq H^0(\mathcal{Y}_m, \mathcal{O}_{\mathcal{Y}_m}).$$

Write $R = H^0(\mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a, \mathcal{O}_{\mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a})$. By the assumption, the map $R \to S_m$ is finite and étale away from boundary (recall that m is sufficiently large such that $\mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a$ is affinoid). Let $Z \subset \operatorname{Spec}(R)$ be the boundary, which is of codimension ≥ 2 . Then the preimage $Z' \subset \operatorname{Spec}(S_m)$ is also of codimension ≥ 2 by Condition (3) in Situation 4.3.2. Both S_m and R are normal and Noetherian. Hence Lemma 2.2.4 shows that

$$S_m = H^0(\operatorname{Spec}(S_m) \setminus Z', \mathcal{O}_{\operatorname{Spec}(S_m)}), \quad R = H^0(\operatorname{Spec}(R) \setminus Z, \mathcal{O}_{\operatorname{Spec}(R)}).$$

Since the map $R \to S_m$ is finite étale away from boundary, we have a trace map $\mathcal{O}_{\text{Spec}(S_m)}|_{\text{Spec}(S_m)\setminus Z'} \to \mathcal{O}_{\text{Spec}(R)}|_{\text{Spec}(R)\setminus Z}$. Taking global sections and identifying using the two isomorphisms above, we obtain the map $\operatorname{tr}_{S_m/R}: S_m \to R$. The next claim is that the associated pairing

$$S_m \otimes_R S_m \to R, \quad s_1 \otimes s_2 \mapsto \operatorname{tr}_{S_m/R}(s_1 s_2)$$

induces an isomorphism $S_m \simeq \operatorname{Hom}_R(S_m, R)$. To see this, let $s_1 \in S_m$ be an element lying in the kernel. Then it lies in the kernel of the pairing away from the boundary, on which it is perfect as $R \to S_m$ is finite étale away from the boundary. Hence $s_1 = 0$ away from the boundary, and thus is zero (by Hartog's extension principle, again). Similarly, any element of $\operatorname{Hom}_R(S_m, R)$ comes from a unique element of S_m away from the boundary, and thus from an element of S_m .

For an affinoid open subset \mathcal{U} of $\mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a$ with preimage $\mathcal{V} \subset \mathcal{Y}^*_m$, repeat the argument above, and we obtain an isomorphism

$$H^0(\mathcal{V}, \mathcal{O}_{\mathcal{Y}_m^*}) \simeq \operatorname{Hom}_R(S_m, H^0(\mathcal{U}, \mathcal{O}_{\mathcal{X}_{\Gamma_a(p^m)}^*(\epsilon)_a})).$$

These isomorphisms can be glued such that the same isomorphism holds for every open subset $\mathcal{U} \subset \mathcal{X}^*_{\Gamma_s(p^m)}(\epsilon)_a$. Take $\mathcal{U} = \mathcal{X}_{\Gamma_s(p^m)}(\epsilon)_a$ and we are done.

Proof of (2). We need to show that the map $\operatorname{colim}_{m'} H^0(\mathcal{Y}_{m'}, \mathcal{O}^+_{\mathcal{Y}_{m'}}) \to H^0(\mathcal{Y}_{\infty}, \mathcal{O}^+_{\mathcal{Y}_{\infty}})$ is injective. ((todo)) Proof of (3). This is a direct corollary of (2).

Definition 4.3.4. Note that on the tower $\mathcal{X}_{\Gamma_s(p^m)}(\epsilon)_a$, we have the tautological Abelian variety $\mathcal{A}_{\Gamma_s(p^m)}^t(\epsilon)_a$ (which are related to each other by pullback), as well as the Abelian varieties $\mathcal{A}_{\Gamma_s(p^m)}(\epsilon)_a = \mathcal{A}(p^{-m}\epsilon)$ over $\mathcal{X}_{\Gamma_s(p^m)}(\epsilon)_a \simeq \mathcal{X}(p^{-m}\epsilon)$. They are related by an isogeny

$$\mathcal{A}_{\Gamma_{\mathrm{s}}(p^m)}(\epsilon)_a \to \mathcal{A}^t_{\Gamma_{\mathrm{s}}(p^m)}(\epsilon)_a$$

whose kernel is the canonical subgroup $C_m \subset \mathcal{A}_{\Gamma_s(p^m)}(\epsilon)_a[p^m]$ of level m. We get an induced subgroup

$$D_m = \mathcal{A}_{\Gamma_{\mathrm{s}}(p^m)}(\epsilon)_a[p^m]/C_m \subset \mathcal{A}^t_{\Gamma_{\mathrm{s}}(p^m)}(\epsilon)_a.$$

Let $D_{m\Gamma_s(p^{m'})}$ be the pullback of D_m to $\mathcal{X}_{\Gamma_s(p^{m'})}(\epsilon)_a$ for $m' \geq m$. We have

$$D_{m\Gamma_{\rm s}(p^{m'})} = D_{m'}[p^{m'}].$$

Also, the D_m give the $\Gamma_s(p^m)$ level structure. Let $D_m\Gamma_s(p^{\infty})$ be the pullback of D_m to $\mathcal{X}_{\Gamma_s(p^{\infty})}(\epsilon)_a$. Since $D_m \to \mathcal{X}_{\Gamma_s(p^m)}(\epsilon)_a$ is finite étale, $D_{m\Gamma_s(p^{\infty})}$ is a perfectoid space.

Lemma 4.3.5. The map

$$\mathcal{A}_{\Gamma_{\mathrm{s}}(p^{\infty})}(\epsilon)_{a}[p^{m}] \to D_{m\Gamma_{\mathrm{s}}(p^{\infty})}$$

is an isomorphism of perfectoid spaces.

Proof. Let (R, R^+) be a perfectoid affinoid $\mathbb{Q}_p^{\text{cycl}}$ -algebra. Then

$$\mathcal{A}_{\Gamma_{s}(p^{\infty})}(\epsilon)_{a}[p^{m}](R,R^{+}) = \lim_{m'} \mathcal{A}_{\Gamma_{s}(p^{m'})}(\epsilon)_{a}[p^{m}](R,R^{+})$$

The transition map

$$\mathcal{A}_{\Gamma_{\mathrm{s}}(p^{m'+m})}(\epsilon)_{a}[p^{m}] \to \mathcal{A}_{\Gamma_{\mathrm{s}}(p^{m'})}(\epsilon)_{a}[p^{m}]$$

kills the canonical subgroup C_m of level m (of $\mathcal{A}_{\Gamma_s(p^{m'+m})}(\epsilon)_a)$, so it factors as

$$\mathcal{A}_{\Gamma_{\mathrm{s}}(p^{m'+m})}(\epsilon)_{a}[p^{m}] \to \mathcal{A}_{\Gamma_{\mathrm{s}}(p^{m'+m})}(\epsilon)_{a}[p^{m}]/C_{m} = D_{m\Gamma_{\mathrm{s}}(p^{m'+m})} \to \mathcal{A}_{\Gamma_{\mathrm{s}}(p^{m'})}(\epsilon)_{a}[p^{m}].$$

This shows that the desired isomorphism holds, since

$$D_{m\Gamma_{\rm s}(p^{\infty})}(R,R^+) = \lim_{m'} D_{m\Gamma_{\rm s}(p^{m'})}(R,R^+).$$

Definition 4.3.6. Let D'_m be the quotient $\mathcal{A}'(\epsilon)[p^m]/C'_m$, where C'_m denotes the canonical subgroup of level m of $\mathcal{A}'(\epsilon)$. We have $D'_m \to \mathcal{X}'(\epsilon) \subset \mathcal{X}'$. Note that all Abelian varieties over $\mathbb{F}_p((t^{1/(p-1)p^{\infty}}))$ parametrized by $\mathcal{X}'(\epsilon)$ are ordinary, as the Hasse invariant divides t^{ϵ} which is invertible.

Lemma 4.3.7. The tilt of $D_{m\Gamma_s(p^{\infty})}$ identifies canonically with the perfection of D'_m .

Proof. Recall from the uniqueness of canonical subgroups (cf. Lemma 2.1.5) that

$$C'_m(R') = \{s \in \mathcal{A}'(\epsilon)[p^m](R') \mid s \equiv 0 \mod p^{(1-\epsilon)/p^m}\}$$

So C'_m is the killed by the Frobenius map. Thus passing to perfection kills C'_m , and hence

$$D_m^{\rm perf} = \mathcal{A}'(\epsilon)[p^m]^{\rm perf}$$

Recall that $\mathcal{A}_{\Gamma_{s}(p^{\infty})}(\epsilon)_{a}^{\flat} \simeq \mathcal{A}'(\epsilon)^{\text{perf}}$, cf. Lemma 4.2.9, we conclude that

$$D_m^{\text{perf}} = \mathcal{A}_{\Gamma_s(p^\infty)}(\epsilon)_a [p^m]^{\flat}.$$

Finally, combine with Lemma 4.3.5 and we obtain

$$D_m^{
m /perf} = D_m^{
m b} \Gamma_{
m s}(p^\infty).$$

Definition 4.3.8. Let $\mathcal{X}_{\Gamma_1(p^m)}^{\prime*}(\epsilon)$ be the open locus of the adic space associated with

$$X^{\operatorname{ord}*}_{\Gamma_1(p^m)} \otimes_{\mathbb{F}_p} \mathbb{F}_p((t^{1/(p-1)p^\infty}))$$

where $|\text{Ha}| \geq |t|^{\epsilon}$. Then

$$\mathcal{X}_{\Gamma_1(p^m)}^{\prime*}(\epsilon) \to \mathcal{X}^{\prime*}(\epsilon)$$

is finite, and étale away from the boundary. In particular, the base-change $\mathcal{X}'_{\Gamma_1(p^m)}(\epsilon) \to \mathcal{X}'(\epsilon) \subset \mathcal{X}'^*(\epsilon)$ is finite étale, parametrizing isomorphisms $D'_m \simeq (\mathbb{Z}/p^m\mathbb{Z})^g$. Let $\mathcal{Z}'^*(\epsilon) \subset \mathcal{X}'^*(\epsilon)$ denote the boundary, with pullback $\mathcal{Z}'^*_{\Gamma_1(p^m)}(\epsilon) \subset \mathcal{X}'^*_{\Gamma_1(p^m)}(\epsilon)$.

Lemma 4.3.9. The triple $(\mathcal{X}'^*(\epsilon)^{\text{perf}}, \mathcal{Z}'^*(\epsilon)^{\text{perf}}, \mathcal{X}'(\epsilon)^{\text{perf}})$ is good, cf. Definition 2.4.1.

Proof. Recall that $\mathcal{X}'^*(\epsilon)$ is the generic fiber of the formal scheme \mathfrak{X}'^* . In the light of Lemma 2.4.5, it sufficies to prove the similar result after restricting to every affine open of \mathfrak{X}'^* , and this is given by Lemma 2.4.6. Note that $X^* \otimes_{\mathbb{Z}_{(p)}} \mathbb{F}_p$ admits a resolution of singularities given by the toroidal compactification, cf. [FC13]. \Box

Lemma 4.3.10. The triple $(\mathcal{X}_{\Gamma_1(p^m)}^{\prime*}(\epsilon)^{\text{perf}}, \mathcal{Z}_{\Gamma_1(p^m)}^{\prime*}(\epsilon)^{\text{perf}}, \mathcal{X}_{\Gamma_1(p^m)}^{\prime}(\epsilon)^{\text{perf}})$ is good.

Proof. Combine Lemma 4.3.9 and Lemma 2.4.4.

4.3.4. Back to the tower. Now fix $m \geq 1$, and consider $\mathcal{Y}_m^* = \mathcal{X}_{\Gamma_1(p^m)}^*(\epsilon)_a \to \mathcal{X}_{\Gamma_0(p^m)}^*(\epsilon)_a$. In the following, we denote $\mathcal{Y}_m^* = \mathcal{X}_{\Gamma_1(p^m)}^*(\epsilon)_a$.

Lemma 4.3.11. The tilt of \mathcal{Y}_{∞} identifies with $\mathcal{X}'_{\Gamma_1(p^m)}(\epsilon)^{\text{perf}}$.

Proof. Recall that the map $\mathcal{X}^*_{\Gamma_1(p^m)}(\epsilon)_a \to \mathcal{X}^*_{\Gamma_0(p^m)}(\epsilon)_a$ is finite étale, and thus the base-change $\mathcal{Y}_m \to \mathcal{X}_{\Gamma_s(p^m)}(\epsilon)_a$ is also finite étale. Hence the map $\mathcal{Y}_\infty \to \mathcal{X}_{\Gamma_s(p^\infty)}(\epsilon)_a$ is finite étale as it is a pullback of \mathcal{Y}_m . Recall from the moduli interpretations that the map $\mathcal{Y}_\infty \to \mathcal{X}_{\Gamma_s(p^\infty)}(\epsilon)_a$ parametrizes all isomorphisms $D_{m\Gamma_s(p^\infty)} \simeq (\mathbb{Z}/p^m\mathbb{Z})^g$ ((todo: ref)). Apply Lemma 4.3.7, we see that the tilt of \mathcal{Y}_∞ parametrizes all isomorphism $D'_m^{\text{perf}} \simeq (\mathbb{Z}/p^m\mathbb{Z})^g$. Therefore the tilt of \mathcal{Y}_m identifies with $\mathcal{X}'_{\Gamma_1(p^m)}(\epsilon)^{\text{perf}}$, cf. Lemma 4.2.9. \Box

Remark 4.3.12. Note that $\mathcal{Y}_m^* \setminus \partial \to \mathcal{X}_{\Gamma_s(p^m)}^*(\epsilon)_a \setminus \partial$ is finite étale. By pullback we get a perfectoid space $\mathcal{Y}_\infty^* \setminus \partial \to \mathcal{X}_{\Gamma_s(p^\infty)}^*(\epsilon)_a \setminus \partial$. We warn the reader that \mathcal{Y}_∞^* is not defined yet.

Lemma 4.3.13. The tilt of $\mathcal{Y}^*_{\infty} \setminus \partial$ identifies with $\mathcal{X}'^*_{\Gamma_1(p^m)}(\epsilon)^{\mathrm{perf}} \setminus \partial$.

Proof. Let $\mathcal{X}_{\Gamma_1(p^m)}^{\prime*}(\epsilon)^{\text{perf}} = \text{Spa}(T, T^+)$, cf. Lemma 4.3.10. Let (U, U^+) be the until of (T, T^+) . Using Lemma 4.3.11 and taking global sections, we obtain a map

$$U^+ \to H^0(\mathcal{Y}_\infty, \mathcal{O}^+_{\mathcal{Y}_\infty}) = S^+_\infty$$

Recall that S_{∞}^+ is the *p*-adic completion of $\operatorname{colim}_{m'} S_{m'}^+$, cf. Lemma 4.3.3. Thus we have a map of adic spaces $\mathcal{Y}_m^* \backslash \partial \to \operatorname{Spa}(S_{\infty}, S_{\infty}^+)$. Combining the two maps and $\mathcal{Y}_{\infty}^* \backslash \partial \to \mathcal{Y}_m^* \backslash \partial$, we get $\mathcal{Y}_{\infty}^* \backslash \partial \to \operatorname{Spa}(U, U^+)$. The two spaces are finite étale over $\mathcal{X}_{\Gamma_s(p^{\infty})}^*(\epsilon)_a$ away from boundary, cf. Lemma 4.2.9, Definition 4.3.8, and Remark 4.3.12. Finally, we can apply Lemma B.0.3 with Lemma 4.3.9 and Lemma 4.3.11, i.e. to the following diagram

$$\begin{array}{c} \mathcal{Y}^{\flat}_{\infty} & \xrightarrow{\sim} & \mathcal{X}'_{\Gamma_{1}(p^{m})}(\epsilon)^{\mathrm{perf}} \\ \downarrow & \downarrow \\ (\mathcal{Y}^{*}_{\infty} \backslash \partial)^{\flat} & \xrightarrow{} & \mathcal{X}'^{*}_{\Gamma_{1}(p^{m})}(\epsilon)^{\mathrm{perf}} \backslash \partial \\ & & \mathcal{X}'^{*}_{\Gamma_{\mathrm{s}}(p^{\infty})}(\epsilon)_{a} \backslash \partial)^{\flat} \simeq \mathcal{X}'^{*}(\epsilon)^{\mathrm{perf}} \backslash \partial. \end{array}$$

Therefore the tilt of $\mathcal{Y}^*_{\infty} \setminus \partial$ identifies with $\mathcal{X}^{\prime*}_{\Gamma_1(p^m)}(\epsilon)^{\mathrm{perf}} \setminus \partial$.

Lemma 4.3.14. The ring $S_{\infty} = H^0(\mathcal{Y}_{\infty}, \mathcal{O}_{\mathcal{Y}_{\infty}})$ is perfected, and the tilt of $\mathcal{Y}_{\infty}^* = \operatorname{Spa}(S_{\infty}, S_{\infty}^+)$ identifies with $\mathcal{X}_{\Gamma_1(p^m)}^{\prime*}(\epsilon)^{\operatorname{perf}}$.

Proof. Let $\mathcal{X}_{\Gamma_1(p^m)}^{\prime*}(\epsilon)^{\text{perf}} = \text{Spa}(T, T^+)$, cf. Lemma 4.3.10. Let (U, U^+) be the until of (T, T^+) . Using Lemma 4.3.11 and taking global sections, we obtain a map

$$U^+ \to H^0(\mathcal{Y}_\infty, \mathcal{O}^+_{\mathcal{Y}_\infty}) = S^+_\infty$$

It sufficies to show that this map is an isomorphism. It's clear that we have an injection $S^+_{\infty}/p \to H^0(\mathcal{Y}_{\infty}, \mathcal{O}^+_{\mathcal{Y}_{\infty}}/p)$. Hence the map

$$(U^+/p)^a = H^0(\mathcal{X}_{\Gamma_1(p^m)}^{\prime*}(\epsilon)^{\mathrm{perf}}, \mathcal{O}^+/t)^a \to H^0(\mathcal{X}_{\Gamma_1(p^m)}^{\prime}(\epsilon)^{\mathrm{perf}}, \mathcal{O}^+/t)^a) = H^0(\mathcal{Y}_{\infty}, \mathcal{O}^+/p)^a = (S_{\infty}^+/p)^a$$

is injective, cf. Lemma 4.3.10. So $U^+ \to S^+_{\infty}$ is injective.

Now we prove the surjectivity. We have a map

$$(S^+_{\infty}/p)^a \to H^0(\mathcal{Y}^*_{\infty} \setminus \partial, \mathcal{O}^+/p)^a \simeq H^0(\mathcal{X}'^*_{\Gamma_1(p^m)}(\epsilon)^{\mathrm{perf}} \setminus \partial, \mathcal{O}^+/t)^a \simeq H^0(\mathcal{X}'^*_{\Gamma_1(p^m)}(\epsilon)^{\mathrm{perf}}, \mathcal{O}^+/t)^a = (U^+/p)^a,$$

where the first isomorphism is provided by Lemma 4.3.13, and the second isomorphism is provided by Lemma 4.3.10. Hence the proof is complete. $\hfill \Box$

Lemma 4.3.15. For any $m \ge 1$, there is a unique perfectoid space $\mathcal{X}^*_{\Gamma_1(p^m)\cap\Gamma_s(p^\infty)}(\epsilon)_a$ over $\mathbb{Q}_p^{\text{cycl}}$ such that

$$\mathcal{X}^*_{\Gamma_1(p^m)\cap\Gamma_{\mathrm{s}}(p^\infty)}(\epsilon)_a \sim \lim_{m'} \mathcal{X}^*_{\Gamma_1(p^m)\cap\Gamma_{\mathrm{s}}(p^{m'})}(\epsilon)_a.$$

Moreover, $\mathcal{X}^*_{\Gamma_1(p^m)\cap\Gamma_s(p^\infty)}(\epsilon)_a$ and all $\mathcal{X}^*_{\Gamma_1(p^m)\cap\Gamma_s(p^{m'})}(\epsilon)_a$ for m' sufficiently large are affinoid, and

$$\operatorname{colim}_{m'} H^0(\mathcal{X}^*_{\Gamma_1(p^m)\cap\Gamma_{\mathrm{s}}(p^{m'})}(\epsilon)_a, \mathcal{O}) \to H^0(\mathcal{X}^*_{\Gamma_1(p^m)\cap\Gamma_{\mathrm{s}}(p^\infty)}(\epsilon)_a, \mathcal{O})$$

has dense image. Let $\mathcal{Z}_{\Gamma_1(p^m)\cap\Gamma_s(p^\infty)}^*(\epsilon)_a \subset \mathcal{X}_{\Gamma_1(p^m)\cap\Gamma_s(p^\infty)}^*(\epsilon)_a$ denote the boundar, and $\mathcal{X}_{\Gamma_1(p^m)\cap\Gamma_s(p^\infty)}(\epsilon)_a$ the preimage of $\mathcal{X}_{\Gamma_s(p)}(\epsilon)_a \subset \mathcal{X}_{\Gamma_s(p)}(\epsilon)_a$. Then the triple

$$(\mathcal{X}_{\Gamma_1(p^m)\cap\Gamma_s(p^\infty)}^*(\epsilon)_a, \mathcal{Z}_{\Gamma_1(p^m)\cap\Gamma_s(p^\infty)}(\epsilon)_a, \mathcal{X}_{\Gamma_1(p^m)\cap\Gamma_s(p^\infty)}(\epsilon)_a)$$

is good.

Proof. This follows directly from Lemma 4.3.3 and Lemma 4.3.14.

Lemma 4.3.16. There is a unique perfectoid space $\mathcal{X}^*_{\Gamma_1(p^{\infty})}(\epsilon)_a$ over $\mathbb{Q}^{\text{cycl}}_p$ such that

$$\mathcal{X}^*_{\Gamma_1(p^\infty)}(\epsilon)_a \sim \lim_m \mathcal{X}^*_{\Gamma_1(p^m)}(\epsilon)_a.$$

Moreover, $\mathcal{X}^*_{\Gamma_1(p^{\infty})}(\epsilon)_a$ and all $\mathcal{X}^*_{\Gamma_1(p^m)}(\epsilon)_a$ for m sufficiently large are affinoid, and

$$\operatorname{colim}_m H^0(\mathcal{X}^*_{\Gamma_1(p^m)}(\epsilon)_a, \mathcal{O}) \to H^0(\mathcal{X}^*_{\Gamma_1(p^\infty)}(\epsilon)_a, \mathcal{O})$$

has dense image. Let $\mathcal{Z}^*_{\Gamma_1(p^{\infty})}(\epsilon)_a \subset \mathcal{X}^*_{\Gamma_1(p^{\infty})}(\epsilon)_a$ denote the boundar, and $\mathcal{X}_{\Gamma_1(p^{\infty})}(\epsilon)_a$ the preimage of $\mathcal{X}_{\Gamma_s(p)}(\epsilon)_a \subset \mathcal{X}_{\Gamma_s(p)}(\epsilon)_a$. Then the triple

$$(\mathcal{X}^*_{\Gamma_1(p^\infty)}(\epsilon)_a, \mathcal{Z}_{\Gamma_1(p^\infty)}(\epsilon)_a, \mathcal{X}_{\Gamma_1(p^\infty)}(\epsilon)_a)$$

is good.

Proof. Pass to the limit on m in Lemma 4.3.15 for the first claim. Apply Lemma 4.3.3 for the second result. Finally use Lemma 2.4.5 for the last assertion.

4.4. Lifting to level Γ .

Lemma 4.4.1. For every $m \ge 1$, the map

$$\mathcal{X}^*_{\Gamma(p^m)}(\epsilon)_a \to \mathcal{X}^*_{\Gamma_1(p^m)}(\epsilon)_a$$

is finite étale.

Proof. First take $\epsilon = 0$. We claim that we have a decomposition

$$\mathcal{X}^*_{\Gamma(p^m)}(0)_a \simeq \bigsqcup_{\Gamma_1(p^m)/\Gamma(p^m)} \mathcal{X}^*_{\Gamma_1(p^m)}(0)_a.$$

((todo))

Lemma 4.4.2. There is a unique perfectoid space $\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)_a$ over $\mathbb{Q}_p^{\text{cycl}}$ such that

$$\mathcal{X}^*_{\Gamma(p^m)}(\epsilon)_a \sim \lim_m \mathcal{X}^*_{\Gamma(p^m)}(\epsilon)_a$$

Moreover, $\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)_a$ and all $\mathcal{X}^*_{\Gamma(p^m)}(\epsilon)_a$ for m sufficiently large are affinoid. The triple

$$(\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)_a, \mathcal{Z}_{\Gamma(p^{\infty})}(\epsilon)_a, \mathcal{X}_{\Gamma(p^{\infty})}(\epsilon)_a)$$

is good.

Proof. This follows from Lemma 4.4.1, Lemma 4.3.16, and almost purity.

5. The Hodge-Tate period map

5.1. The map of topological spaces.

Definition 5.1.1. The topological space $|\mathcal{X}^*_{\Gamma(p^{\infty})}|$ (resp. $|\mathcal{X}_{\Gamma(p^{\infty})}|$, $|\mathcal{Z}_{\Gamma(p^{\infty})}|$) is defined as the limit $\lim_m |\mathcal{X}^*_{\Gamma(p^m)}|$ (resp. $\lim_m |\mathcal{X}_{\Gamma(p^m)}|$, $\lim_m |\mathcal{Z}_{\Gamma(p^m)}|$).

Definition 5.1.2. Let K be a complete non-Archimedean field extension of $\mathbb{Q}_p^{\text{cycl}}$. Let $K^+ \subset K$ be an open and bounded valuation subring. We define

$$\mathcal{X}^*_{\Gamma(p^\infty)}(K,K^+) = \lim_m \mathcal{X}^*_{\Gamma(p^m)}(K,K^+).$$

Construction 5.1.3. We now construct the map

$$|\pi_{\mathrm{HT}}|: |\mathcal{X}^*_{\Gamma(p^{\infty})}| \setminus |\mathcal{Z}^*_{\Gamma(p^{\infty})}| \to |\mathscr{F}\ell|.$$

Let $x \in |\mathcal{X}^*_{\Gamma(p^{\infty})}| \setminus |\mathcal{Z}^*_{\Gamma(p^{\infty})}|$ be a point. Denote its image by $x_m \in |\mathcal{X}^*_{\Gamma(p^m)}| \setminus |\mathcal{Z}^*_{\Gamma(p^m)}|$ for $m \ge 1$. The point x_m induces a map $\phi_m : \operatorname{Spa}(L_m, L_m^+) \to \mathcal{X}^*_{\Gamma(p^m)} \setminus \mathcal{Z}_{\Gamma(p^m)} = X_{\Gamma(p^m), \mathbb{Q}_p^{\operatorname{cycl}}}^{\operatorname{ad}}$, cf. Lemma B.0.4. Note that L_m is the completion of the residue field of x_m , and (L_m, L_m^+) is a non-discrete affinoid field. The extension L_{m+1}/L_m is finite, and thus there exists a unique minimal non-discrete affinoid field (L, L^+) containing all of (L_m, L_m^+) . Hence we get a map $\phi_m : \operatorname{Spa}(L, L^+) \to X_{\Gamma(p^m), \mathbb{Q}_p^{\operatorname{cycl}}}^{\operatorname{cycl}}$ that factors through $\operatorname{Spa}(L_m, L_m^+)$. Restricting to the unique generic point $\operatorname{Spa}(L, \mathcal{O}_L)$, we get a map of schemes $\operatorname{Spec}(L) \to X_{\Gamma(p^m), \mathbb{Q}_p^{\operatorname{cycl}}}$. The moduli interpretation gives a principally polarized Abelian variety A over L of dimension g, with level structure $\eta_p : A[p^m](\overline{L}) \to (\mathbb{Z}/p^m\mathbb{Z})^{2g}$. We then get a map $\eta_p : T_p(A_{\overline{L}}) \to \mathbb{Z}_p^{2g}$ by varying m. Let $C = \widehat{\overline{L}}$ be the completion. Then we have the Hodge–Tate filtration

$$0 \to \operatorname{Lie}(A_C) \to T_p(A_C) \otimes_{\mathbb{Z}_p} C \simeq C^{2g}.$$

In other words, we obtain a g-dimensional subspace of C^{2g} , which then gives an L-point of Fl, and finally we obtains an $\operatorname{Spa}(L, \mathcal{O}_L)$ -point of $\mathscr{F}\ell$. Since Fl is proper, it extends to a map $\operatorname{Spa}(L, L^+) \to \mathscr{F}\ell$.

Lemma 5.1.4. There is a $G(\mathbb{Q}_p)$ -equivariant continuous map

$$|\pi_{\mathrm{HT}}|: |\mathcal{X}^*_{\Gamma(p^\infty)}| \setminus |\mathcal{Z}_{\Gamma(p^\infty)}| \to |\mathscr{F}\ell|,$$

defined by sending a point $x \in (\mathcal{X}^*_{\Gamma(p^{\infty})} \setminus \mathcal{Z}_{\Gamma(p^{\infty})})(K, K^+)$ corresponding to a principally polarized Ablian variety A/K and a symplectic isomorphism $\alpha : T_pA \to \mathbb{Z}_p^{2g}$, to the Hodge–Tate filtration $\operatorname{Lie}(A) \subset K^{2g}$.

Proof. We show the continuity. Let $S = \mathcal{X}^* \setminus \mathcal{Z} = X_{\mathbb{Q}_p^{cycl}}^{ad}$ be an adic space. Let $g : A_S \to S$ be the universal Abelian variety. By [Sch13a, Theorem 1.3], we have almost ismorphisms

$$(R^1g_*\mathbb{Z}/p^n\mathbb{Z})\otimes_{\mathbb{Z}/p^n\mathbb{Z}}\mathcal{O}_S^+/p^n \to R^1g_*\mathcal{O}_{A_S}^+/p^n$$

for all $n \ge 1$. Passing to the limit over $n \ge 1$, we obtain an isomorphism

$$R^1g_*\widehat{\mathbb{Z}}_p\otimes_{\widehat{\mathbb{Z}}_p}\widehat{\mathcal{O}}_S \to R^1g_*\widehat{\mathcal{O}}_{A_S}$$

of sheaves on the pro-étale site $S_{\text{proét}}$. Hence we get a map

$$(R^1g_*\mathcal{O}_{A_S})\otimes_{\mathcal{O}_S}\widehat{\mathcal{O}}_S\to R^1g_*\widehat{\mathcal{O}}_{A_S}.$$

The adic space S can be covered by affinoid open subsets $\{U_i\}$, such that each U_i is the bottom level of an affinoid perfectoid object $(U_{i,j})_{j \in J}$ in $S_{\text{pro\acute{e}t}}$ such that all transition maps are finite étale surjective. Let $\hat{U}_{i,m}$ be the base change of \hat{U}_i from S to $\mathcal{X}^*_{\Gamma(p^m)} \setminus \mathcal{Z}_{\Gamma(p^m)}$. By almost purity, $\hat{U}_{i,m}$ is affinoid perfectoid, as \hat{U}_i is affinoid perfectoid. Hence we have an affinoid perfectoid space

$$\widehat{U}_{i,\infty} \sim \lim_m \widehat{U}_{i,m},$$

which is also the affinoid perfectoid space associated to the following affinoid perfectoid object in $S_{\text{pro\acuteet}}$

$$V = (U_{i,j} \times_S \mathcal{X}^*_{\Gamma(p^m)} \setminus \mathcal{Z}_{\Gamma(p^m)})_{j \in J, m \ge 1}.$$

Evaluating the map

$$(R^1g_*\mathcal{O}_{A_S})\otimes_{\mathcal{O}_S}\widehat{\mathcal{O}}_S\to R^1g_*\widehat{\mathbb{Z}}_p\otimes_{\widehat{\mathbb{Z}}_p}\widehat{\mathcal{O}}_S$$

at V gives a map

$$\operatorname{Lie}(A_S) \otimes_{\mathcal{O}_S} \mathcal{O}_V \to \mathcal{O}_V^{2_2}$$

which is injective, and the image is totally isotropic. Hence we obtain a map of adic spaces

$$\widehat{U}_{i,\infty} \to \mathscr{F}\ell$$

We have the following commutative diagram

$$\begin{split} |\widehat{U}_{i,\infty}| & \longrightarrow |\mathscr{F}\ell| \\ \downarrow & \uparrow \\ |U_i| \times_{|S|} (|\mathcal{X}^*_{\Gamma(p^\infty)}| \setminus |\mathcal{Z}_{\Gamma(p^\infty)}|) & \longrightarrow |\mathcal{X}^*_{\Gamma(p^\infty)}| \setminus |\mathcal{Z}_{\Gamma(p^\infty)}|. \end{split}$$

The map $|\widehat{U}_{i,\infty}| \to |U_i| \times_{|S|} (|\mathcal{X}^*_{\Gamma(p^{\infty})}| \setminus |\mathcal{Z}_{\Gamma(p^{\infty})}|)$ on the left is continuous, open, and surjective. Hence the restriction $|U_i| \times_{|S|} (|\mathcal{X}^*_{\Gamma(p^{\infty})}| \setminus |\mathcal{Z}_{\Gamma(p^{\infty})}|) \subset |\mathcal{X}^*_{\Gamma(p^{\infty})}| \setminus |\mathcal{Z}_{\Gamma(p^{\infty})}| \to |\mathscr{F}\ell|$ is continuous. Therefore the map $|\pi_{\mathrm{HT}}| : |\mathcal{X}^*_{\Gamma(p^{\infty})}| \setminus |\mathcal{Z}_{\Gamma(p^{\infty})}| \to |\mathscr{F}\ell|$ is continuous.

Lemma 5.1.5. The preimage of $\mathscr{F}(\mathbb{Q}_p) \subset |\mathscr{F}\ell|$ under $|\pi_{\mathrm{HT}}|$ is given by the closure of

$$|\mathcal{X}^*_{\Gamma(p^\infty)}(0)| \setminus |\mathcal{Z}_{\Gamma(p^\infty)}(0)|.$$

Proof. First, note that $|\mathcal{X}^*_{\Gamma(p^{\infty})}(0)| |\mathcal{Z}_{\Gamma(p^{\infty})}(0)|$ is a retro-compact open subset of the locally spectral topological space $|\mathcal{X}^*_{\Gamma(p^{\infty})}| |\mathcal{Z}_{\Gamma(p^{\infty})}|$. Hence its closure is equal to the set of specializations, cf. [Hoc69, Theorem 1], and thus the set of points $x \in |\mathcal{X}^*_{\Gamma(p^{\infty})}| |\mathcal{Z}_{\Gamma(p^{\infty})}|$ whose maximal generalization $\tilde{x} \in |\mathcal{X}^*_{\Gamma(p^{\infty})}(0)| |\mathcal{Z}_{\Gamma(p^{\infty})}(0)|$. Also, $\mathscr{F}(\mathbb{Q}_p)$ is stable under generalization and specialization. Combining these results, it suffices to prove that for every maximally general point $x \in |\mathcal{X}^*_{\Gamma(p^{\infty})}| |\mathcal{Z}_{\Gamma(p^{\infty})}|$, we have $x \in |\mathcal{X}^*_{\Gamma(p^{\infty})}(0)| |\mathcal{Z}_{\Gamma(p^{\infty})}(0)|$ if and only if $|\pi_{\mathrm{HT}}|(x) \in \mathscr{F}(\mathbb{Q}_p)$.

Let C be an algebraically closed complete non-Archimedean extension of \mathbb{Q}_p . Let $x : \operatorname{Spa}(C, \mathcal{O}_C) \to \mathcal{X}^*_{\Gamma(p^{\infty})} \setminus \mathcal{Z}_{\Gamma(p^{\infty})}$. By the moduli interpretation, it corresponds to a principally polarized Abelian variety A over C, with the infinite level structure $\eta : T_p(A) \to \mathbb{Z}_p^{2g}$. Let G/\mathcal{O}_C be the Néron model of A/C. The point x lies in $\mathcal{X}^*_{\Gamma(p^{\infty})}(0) \setminus \mathcal{Z}_{\Gamma(p^{\infty})}(0)$, i.e. the Hasse invariant of A is invertible, if and only if B is ordinary, where B/\mathcal{O}_C is the Abelian variety fitting into the exact sequence

$$0 \to \widehat{T} \to \widehat{G} \to \widehat{B} \to 0,$$

where T is a split torus over \mathcal{O}_C , cf. [Sch13b, Proposition 4.15], if and only if $B[p^{\infty}] \simeq (\mathbb{Q}_p/\mathbb{Z}_p)^g \times \mu_{p^{\infty}}^g$. Also, $|\pi_{\mathrm{HT}}|(x) \in \mathscr{F}(\mathbb{Q}_p)$ if and only if $\mathrm{Lie}(\widehat{G}) \otimes_{\mathcal{O}_C} C \subset T_p \widehat{G} \otimes_{\mathbb{Z}_p} C$ is a \mathbb{Q}_p -rational subspace, if and only if $\mathrm{Lie}(B) \otimes_{\mathcal{O}_C} C \subset T_p B \otimes_{\mathbb{Z}_p} C$ is a \mathbb{Q}_p -rational subspace.

Now suppose B is ordinary. Then the Hodge–Tate filtration is \mathbb{Q}_p -rational, as it measures the position of the canonical subgroup of level m under η . In particular, we have $|\pi_{\mathrm{HT}}|(x) \in \mathscr{F}\ell(\mathbb{Q}_p)$.

Conversely, suppose $|\pi_{\mathrm{HT}}|(x) \in \mathscr{F}(\mathbb{Q}_p)$. By [SW13, Theorem 5.2.1], the *p*-divisible group $B[p^{\infty}]$ corresponds to a pair (T, W), where $T = T_p(B[p^{\infty}])$ is a free \mathbb{Z}_p -module of finite rank, and W is a C-subvector space of $T \otimes C(-1)$. The subspace W is a \mathbb{Q}_p -rational totally isotropic subspace as $|\pi_{\mathrm{HT}}|(x) \in \mathscr{F}(\mathbb{Q}_p)$. Since all such subspaces are contained in one orbit under the action of $G(\mathbb{Z}_p)$, we conclude that $B[p^{\infty}] \simeq (\mathbb{Q}_p/\mathbb{Z}_p)^{2g} \times \mu_{p^{\infty}}^g$, and thus B is ordinary. \Box

Lemma 5.1.6. The set $\mathscr{F}(\mathbb{Q}_p)$ is equal to the intersection of all of its open neighbourhoods in \mathscr{F}_{ℓ} .

Proof. This follows directly from the fact that $\mathscr{F}(\mathbb{Q}_p)$ is stable under generalizations.

Lemma 5.1.7. The quasi-compact open neighbourhoods of $\mathscr{F}\!\ell(\mathbb{Q}_p)$ are cofinal among all open neighbourhoods.

Proof. The flag variety $\operatorname{Fl}_{\mathbb{Q}_p}$ is projective, and thus $\mathscr{F}(\mathbb{Q}_p) = \operatorname{Fl}(\mathbb{Q}_p)$ is quasi-compact, as the induced topology is the same as the *p*-adic analytic topology. Then we conclude by the fact that the topology of $\mathscr{F}\ell$ is generated by quasi-compact open subsets.

Lemma 5.1.8. For any open subset $U \subset \mathscr{F}\ell$ containing a \mathbb{Q}_p -rational point, we have $G(\mathbb{Q}_p) \cdot U = \mathscr{F}\ell$.

Proof. Omitted.

Lemma 5.1.9. Let $0 < \epsilon < 1$. There is an open subset $U \subset \mathscr{F}\ell$ containing $\mathscr{F}\ell(\mathbb{Q}_p)$ such that

$$|\pi_{\mathrm{HT}}|^{-1}(U) \subset |\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)| \setminus |\mathcal{Z}_{\Gamma(p^{\infty})}(\epsilon)|.$$

Proof. By induction on $g \ge 0$, it sufficies to prove the similar result for the restriction $\pi = |\pi_{\mathrm{HT}}| : |\mathcal{X}_{\Gamma(p^{\infty})}| \to |\mathscr{F}\ell|$ to the good reduction locus. We shall show that there exists an open subset $U \subset \mathscr{F}\ell$ containing $\mathscr{F}\ell(\mathbb{Q}_p)$ such that $\pi^{-1}(U) \subset |\mathcal{X}_{\Gamma(p^{\infty})}(\epsilon)|$, i.e. $|\mathrm{Ha}| \ge |p|^{\epsilon}$ on U. Consider the constructible topology $|\mathcal{X}_{\Gamma(p^{\infty})}|_{\mathrm{cons.}}$ It is the coarest topology such that every quasi-compact open subset becomes open and closed. Hence $\pi^{-1}(U)$ is closed in the constructible topology for every quasi-compact open neighbourhood of $\mathscr{F}\ell(\mathbb{Q}_p)$, as the map π is quasi-compact. The complement $|\mathcal{X}_{\Gamma(p^{\infty})}| \setminus |\mathcal{X}_{\Gamma(p^{\infty})}(\epsilon)|$ is closed and thus quasi-compact in the constructible topology. Also, we have

$$\overline{|\mathcal{X}_{\Gamma(p^{\infty})}(0)|} = \pi^{-1}(\mathscr{F}\ell(\mathbb{Q}_p)) = \bigcap_{\mathscr{F}\ell(\mathbb{Q}_p)\subset U} \pi^{-1}(U) \subset |\mathcal{X}_{\Gamma(p^{\infty})}(\epsilon)|,$$

by combining Lemma 5.1.5 and Lemma 5.1.6. Finally we obtain a desired open U satisfying $\pi^{-1}(U) \subset |\mathcal{X}_{\Gamma(p^{\infty})}(\epsilon)|$ by Lemma 5.1.7.

Lemma 5.1.10. Let $0 < \epsilon < 1$. There are finitely many $\gamma_1, \ldots, \gamma_k \in G(\mathbb{Q}_p)$ such that

$$|\mathcal{X}^*_{\Gamma(p^{\infty})}| \setminus |\mathcal{Z}_{\Gamma(p^{\infty})}| = \bigcup_{i=1}^k \gamma_i \cdot (|\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)| \setminus |\mathcal{Z}_{\Gamma(p^{\infty})}(\epsilon)|)$$

Moreover, for such $\gamma_1, \ldots, \gamma_k$, we have

$$|\mathcal{X}^*_{\Gamma(p^{\infty})}| = \bigcup_{i=1}^k \gamma_i \cdot |\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)|.$$

Proof. Let $U \subset \mathscr{F}\ell$ be an open subset containing $\mathscr{F}\ell(\mathbb{Q}_p)$ such that $|\pi_{\mathrm{HT}}|^{-1}(U) \subset |\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)| \setminus |\mathcal{Z}_{\Gamma(p^{\infty})}(\epsilon)|$, cf. Lemma 5.1.9. Apply Lemma 5.1.8 and the fact that $\mathscr{F}\ell$ is quasi-compact, we obtain finitely many elements $\gamma_1, \ldots, \gamma_k \in G(\mathbb{Q}_p)$ such that $\mathscr{F}\ell = \bigcup_{i=1}^k \gamma_i \cdot U$. Taking the preimage, the first equation is clear, cf. Lemma 5.1.4.

Let V be the union $\bigcup_{i=1}^{k} \gamma_i \cdot |\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)|$. It remains to show that $V = |\mathcal{X}^*_{\Gamma(p^{\infty})}|$. Note that V is a quasi-compact open subset of $|\mathcal{X}^*_{\Gamma(p^{\infty})}|$, and contains $|\mathcal{X}^*_{\Gamma(p^{\infty})}| \setminus |\mathcal{Z}_{\Gamma(p^{\infty})}|$. There exists $m \geq 1$ such that V is the preimage of some $V_m \subset |\mathcal{X}^*_{\Gamma(p^m)}|$, where V_m is a quasi-compact open containing $\mathcal{X}^*_{\Gamma(p^m)} \setminus \mathcal{Z}_{\Gamma(p^m)}$. It sufficies to show that $V_m = \mathcal{X}^*_{\Gamma(p^m)}$. Let $x \in \mathcal{X}^*_{\Gamma(p^m)} \setminus V_m$. Then $\{x\}$ is equal to the intersection of all open neighbourhoods of x in $\mathcal{X}^*_{\Gamma(p^m)}$. The subset V_m is quasi-compact in the constructible topology, and thus there exists an open neighbourhood U of x that is disjoint with V_m . In particular, we have $U \subset \mathcal{Z}_{\Gamma(p^m)}$, which is impossible due to dimension reason.

Lemma 5.1.11. Let $0 \le \epsilon < 1/2$. There exists finitely many $\gamma_1, \ldots, \gamma_k \in G(\mathbb{Z}_p)$ such that

$$|\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)| = \bigcup_{i=1}^k \gamma_i \cdot |\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)_a|.$$

Proof. Let $x \in |\mathcal{X}^{<}_{\Gamma(p^{\infty})}(\epsilon)|$. It corresponds to a principally polarized Abelian variety A with a level structure $\eta : T_p(A) \to \mathbb{Z}_p^{2g}$. We assume that A has good reduction. The existence of the anti-canonical subgroup $D \subset A[p]$ is equivalent to the condition that the isomorphism $A[p] \to \mathbb{F}_p^{2g}$ induced by η sends D to a subgroup disjoint with $\mathbb{F}_p^g \subset \mathbb{F}_p^{2g}$, which can always be achieved by an element in $G(\mathbb{F}_p)$.

5.2. The map of adic spaces.

Definition 5.2.1. A subset $U \subset |\mathcal{X}^*_{\Gamma(p^{\infty})}|$ is called affinoid perfectoid if

- (1) There exists $m \ge 1$ such that U is the preimage of an affinoid open $\operatorname{Spa}(R_m, R_m^+) \subset |\mathcal{X}^*_{\Gamma(m^m)}|$.
- (2) For every $m' \ge m$, if we write the preimage of $\operatorname{Spa}(R_m, R_m^+)$ in $\mathcal{X}^*_{\Gamma(p^{m'})}$ (which is necessarily affinoid) as $\operatorname{Spa}(R_{m'}, R_{m'}^+)$, then $(R_{\infty}, R_{\infty}^+)$ is an affinoid perfectoid $\mathbb{Q}_p^{\operatorname{cycl}}$ -algebra, where R_{∞}^+ is the *p*-adic completion of $\operatorname{colim}_{m'} R_{m'}^+$ and $R_{\infty} = R_{\infty}^+ [1/p]$.

Definition 5.2.2. A subset $U \subset |\mathcal{X}^*_{\Gamma(p^{\infty})}|$ is called perfectoid if it is a union of affinoid perfectoid open subsets.

Lemma 5.2.3. There exists a perfectoid space $\mathcal{X}^*_{\Gamma(p^{\infty})}$ over $\mathbb{Q}^{\text{cycl}}_p$ such that

$$\mathcal{X}^*_{\Gamma(p^\infty)} \sim \lim_m \mathcal{X}^*_{\Gamma(p^m)}$$

It is covered by finitely many $G(\mathbb{Q}_p)$ -translates of $\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)_a$ for any $0 < \epsilon < 1/2$.

Proof. By Lemma 5.1.10, Lemma 5.1.11, and Lemma 4.4.2, we conclude that $|\mathcal{X}^*_{\Gamma(p^{\infty})}|$ is perfected. Thus it carries the structure of a perfected space. The remaining two claims are both clear.

Let $\mathcal{Z}_{\Gamma(p^{\infty})} \subset \mathcal{X}^*_{\Gamma(p^{\infty})}$ be the boundary.

Lemma 5.2.4. There is a unique map of adic spaces over \mathbb{Q}_p

$$\pi_{\mathrm{HT}}: \mathcal{X}^*_{\Gamma(p^\infty)} \setminus \mathcal{Z}_{\Gamma(p^\infty)} \to \mathscr{F}\ell$$

which realizes $|\pi_{\rm HT}|$ on topological spaces.

Proof. We repeat the arguments of Construction 5.1.3 and the result is clear.

Definition 5.2.5. Recall the following inclusions of algebraic varieties over \mathbb{Q}

$$\operatorname{Fl} \to \operatorname{Gr}(2g,g) \to \mathbb{P}^{\binom{2g}{g}-1} \simeq \mathbb{P}(\wedge^g \mathbb{Q}^{2g}).$$

Let $\{e_1, \ldots, e_{2g}\}$ be a basis of \mathbb{Q}^{2g} . Denote $e_J = e_{j_1} \wedge \cdots \wedge e_{j_g}$ for $J = \{j_1 < \cdots < j_g\} \subset \{1, \ldots, 2g\}$. Then we have an affinoid open $\{|x_J| \ge 1\}$ in $\mathbb{P}(\wedge^g \mathbb{Q}^{2g})^{\mathrm{ad}}$ for every J. The preimage in $\mathscr{F}\ell$ is denoted by $\mathscr{F}\ell_J$, which is an affinoid open in $\mathscr{F}\ell$.

Lemma 5.2.6. Let $L \in \mathscr{F}\ell(\mathbb{Q}_p)$ be a totally isotropic subspace of \mathbb{Z}_p^{2g} . Then $L \in \mathscr{F}\ell_{\{g+1,\ldots,2g\}}$ if and only if L is transverse with $\mathbb{Z}_p^g \oplus 0^g$.

Proof. Omitted.

Lemma 5.2.7. The preimage of $\mathscr{F}_{\{g+1,\ldots,2g\}}(\mathbb{Q}_p)$ is given by the closure of $\mathcal{X}^*_{\Gamma(p^{\infty})}(0)_a \setminus \mathcal{Z}_{\Gamma(p^{\infty})}(0)_a$.

Proof. We first consider the good reduction case. It sufficies to check the rank 1 points. Let $x : \operatorname{Spa}(C, \mathcal{O}_C) \to \mathcal{X}_{\Gamma(p^{\infty})}$. Suppose it corresponds to the Abelian variety A/\mathcal{O}_C with level structure $\eta : T_a A \to \mathbb{Z}_p^{2g}$. We have that $\pi_{\operatorname{HT}}(x) \in \mathscr{F}\!\ell_{\{g+1,\ldots,2g\}}(\mathbb{Q}_p)$ if and only if $x \in \mathcal{X}_{\Gamma(p^{\infty})}(0)_a$, cf. Lemma 5.1.5. The result then follows from Lemma 5.2.6.

Next, we shall show that $\mathcal{X}^*_{\Gamma(p^{\infty})}(0)_a \setminus \mathcal{Z}_{\Gamma(p^{\infty})}(0)_a$ is mapped to $\mathcal{F}_{\{g+1,\ldots,2g\}}(\mathbb{Q}_p)$. Otherwise, there exists a clopen subset of $\mathscr{F}(\mathbb{Q}_p)$ disjoint from $\mathscr{F}\ell_{\{g+1,\ldots,2g\}}(\mathbb{Q}_p)$ that intersects with the image of $\mathcal{X}^*_{\Gamma(p^{\infty})}(0)_a \setminus \mathcal{Z}_{\Gamma(p^{\infty})}(0)_a$. Taking its preimage gives a clopen subset of $\mathcal{X}^*_{\Gamma(p^{\infty})}(0)_a \setminus \mathcal{Z}_{\Gamma(p^{\infty})}(0)_a$ whose image in $\mathscr{F}\ell(\mathbb{Q}_p)$ is disjoint from $\mathscr{F}\ell_{\{g+1,\ldots,2g\}}(\mathbb{Q}_p)$. Recall that the triple $(\mathcal{X}^*_{\Gamma(p^{\infty})}(0)_a, \mathcal{Z}_{\Gamma(p^{\infty})}(0)_a, \mathcal{X}_{\Gamma(p^{\infty})}(0)_a)$ is good, cf. Lemma 4.4.2, which implies that any clopen subset of $\mathcal{X}^*_{\Gamma(p^{\infty})}(0)_a \setminus \mathcal{Z}_{\Gamma(p^{\infty})}(0)_a$ extends uniquely to a clopen subset of $\mathcal{X}^*_{\Gamma(p^{\infty})}(0)_a$. Hence we obtain a nonempty clopen subset $V \subset \mathcal{X}^*_{\Gamma(p^{\infty})}(0)_a$ such that

$$\pi_{\mathrm{HT}}(V \cap \mathcal{X}_{\Gamma(p^{\infty})}(0)_{a}) = \pi_{\mathrm{HT}}(V \setminus \mathcal{Z}_{\Gamma(p^{\infty})}(0)_{a}) \subset \mathscr{F}\!\ell(\mathbb{Q}_{p}) \setminus \mathscr{F}\!\ell_{\{g+1,\ldots,2g\}}(\mathbb{Q}_{p}).$$

Intersecting with V gives a good triple

$$(V, V \cap \mathcal{Z}_{\Gamma(p^{\infty})}(0)_a, V \cap \mathcal{X}_{\Gamma(p^{\infty})}(0)_a)$$

In particular, the intersection $V \cap \mathcal{X}_{\Gamma(p^{\infty})}(0)_a$ is nonempty. This constradicts the case of good reduction.

Finally, it suffices to prove that $\pi_{\mathrm{HT}}(x) \in \mathscr{F}\ell_{\{g+1,\ldots,2g\}}(\mathbb{Q}_p)$ implies that $x \in \mathcal{X}^*_{\Gamma(p^{\infty})}(0)_a \setminus \mathcal{Z}_{\Gamma(p^{\infty})}(0)_a$ for every rank 1 point $x : \mathrm{Spa}(C, \mathcal{O}_C) \to \mathcal{X}^*_{\Gamma(p^{\infty})} \setminus \mathcal{Z}_{\Gamma(p^{\infty})}$. Choose $\gamma \in G(\mathbb{Z}_p)$ such that $\gamma \cdot x \in \mathcal{X}^*_{\Gamma(p^{\infty})}(0)_a$, cf. Lemma 5.1.11, and assume that $x \notin \mathcal{X}^*_{\Gamma(p^{\infty})}(0)_a \setminus \mathcal{Z}_{\Gamma(p^{\infty})}(0)_a$. Then

$$\gamma \cdot x \in \mathcal{X}^*_{\Gamma(p^\infty)}(0)_a \setminus \gamma \cdot \mathcal{X}^*_{\Gamma(p^\infty)}(0)_a.$$

Repeat the argument in the previous paragraph, we obtain an element $y \in \mathcal{X}_{\Gamma(p^{\infty})}(0)_a \setminus \gamma \cdot \mathcal{X}_{\Gamma(p^{\infty})}(0)_a$ such that $\pi_{\mathrm{HT}}(y) \in \gamma \cdot \mathscr{F}\ell_{\{g+1,\ldots,2g\}}(\mathbb{Q}_p)$. Note that $\gamma^{-1} \cdot y \in \mathcal{X}_{\Gamma(p^{\infty})}(0) \setminus \mathcal{X}_{\Gamma(p^{\infty})}(0)_a$, and $\pi_{\mathrm{HT}}(\gamma^{-1} \cdot y) \in \mathscr{F}\ell_{\{g+1,\ldots,2g\}}(\mathbb{Q}_p)$. This constradicts the good reduction case.

23

Lemma 5.2.8. For every open subset $U \subset \mathscr{F}\ell$ containing $\mathscr{F}\ell(\mathbb{Q}_p)$, there is some $\epsilon > 0$ such that

$$\mathcal{X}^*_{\Gamma(p^\infty)}(\epsilon) \setminus \mathcal{Z}_{\Gamma(p^\infty)}(\epsilon) \subset \pi^{-1}_{\mathrm{HT}}(U)$$

Proof. Repeat the argument in Lemma 5.1.7.

Lemma 5.2.9. There exists some $0 < \epsilon < 1/2$ such that

$$\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)_a \setminus \mathcal{Z}_{\Gamma(p^{\infty})}(\epsilon)_a \subset \pi_{\mathrm{HT}}^{-1}(\mathscr{F}\!\ell_{\{g+1,\ldots,2g\}}).$$

Proof. Choose an open neighbourhood U of $\mathscr{F}\ell(\mathbb{Q}_p)$ in $\mathscr{F}\ell$ such that $U \cap \mathscr{F}\ell_{\{g+1,\ldots,2g\}}(\mathbb{Q}_p)$ is clopen in U. Let $U' = U \setminus \mathscr{F}\ell_{\{g+1,\ldots,2g\}}(\mathbb{Q}_p)$. We can choose ϵ such that $\pi_{\mathrm{HT}}(\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)_a \setminus \mathcal{Z}_{\Gamma(p^{\infty})}(\epsilon)_a) \subset U$. The preimage of U' gives a unique clopen subset $V_{\epsilon} \subset \mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)_a$, as the triple

$$(\mathcal{X}^*_{\Gamma(p^\infty)}(\epsilon)_a, \mathcal{Z}_{\Gamma(p^\infty)}(\epsilon)_a, \mathcal{X}_{\Gamma(p^\infty)}(\epsilon)_a)$$

is good. The intersection of all V_{ϵ} for ϵ sufficiently smalle is empty, cf. Lemma 5.2.7. Since every V_{ϵ} is quasicompact under the constructible topology, we have $V_{\epsilon} = \emptyset$ for some $\epsilon > 0$, and the proof is complete.

Lemma 5.2.10. There exists a unique map of adic spaces

$$\pi_{\mathrm{HT}}: \mathcal{X}^*_{\Gamma(p^\infty)} \to \mathscr{F}_{\ell}$$

extending π_{HT} on $\mathcal{X}^*_{\Gamma(p^{\infty})} \setminus \mathcal{Z}_{\Gamma(p^{\infty})}$.

Proof. We first show the existence. As π_{HT} is $G(\mathbb{Q}_p)$ -equivariant, it sufficies to show that π_{HT} admits an extension from $\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)_a \setminus \mathcal{Z}_{\Gamma(p^{\infty})}(\epsilon)_a$ to $\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)_a$ for some $\epsilon > 0$, cf. Lemma 5.1.10 and Lemma 5.1.11. It can be assumed that $\pi_{\mathrm{HT}}(\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)_a \setminus \mathcal{Z}_{\Gamma(p^{\infty})}(\epsilon)_a) \subset \mathscr{F}\!\ell_{\{g+1,\ldots,2g\}}$ by Lemma 5.2.9. Every bounded function on $\mathscr{F}\!\ell_{\{g+1,\ldots,2g\}}$ pulls back to a bounded function on $\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)_a \setminus \mathcal{Z}_{\Gamma(p^{\infty})}(\epsilon)_a$, which by Riemann's Hebbarkeitssatz extends uniquely to a bounded function on $\mathcal{X}^*_{\Gamma(p^{\infty})}(\epsilon)_a$. Hence the extension exists.

For the uniqueness, it can be checked locally. Let U be an affinoid perfectoid of $\mathcal{X}^*_{\Gamma(p^{\infty})}$. Let f, g be two functions on U that are equal on $U \setminus \mathcal{Z}_{\Gamma(p^{\infty})}$. The subset $\{|f - g| \ge |p|^n\}$ is an open subset of U contained in the boundary, and thus must be empty. Hence $|f - g| < |p|^n$ for all n. Therefore f = g, and we are done. \Box

APPENDIX A. REVIEW OF DEFORMATION THEORY

Definition A.0.1 ([Ill71, II.1.2.1, II.1.2.3]). Let $A \to B$ be a map of rings. The simplicial A-algebra $P_A(B)$ is defined by $P_A(B)_0 = A[B]$ and $P_A(B)_n = A[P_A(B)_{n-1}]$ for $n \ge 1$. The standard resolution of B over A is the argumentation $P_A(B) \to B$ where B is viewed as a constant simplicial A-algebra. The cotangent complex of B over A is the simplicial B-module $L_{B/A} = \Omega^1_{P_A(B)/A} \otimes_{P_A(B)} B$.

Remark A.0.2. This definition works in a general topos.

Definition A.0.3 ([Ill72, VII.1.1.1]). Let S be a scheme. Let S_{zar} be the small Zariski site over S. Let S_{fpqc} be the big fqpc site over S. The natural inclusion $S_{\text{zar}} \to S_{\text{fpqc}}$ induces a geometric map $(\epsilon^*, \epsilon_*) : \text{Sh}(S_{\text{zar}}) \rightleftharpoons \text{Sh}(S_{\text{fpqc}})$.

Definition A.0.4. Let $f: X \to Y$ be a map of schemes. The cotangent complex is $L_{X/Y}$.

Definition A.0.5. Let S be a scheme. Let G be a group scheme over S that is flat and locally of finite presentation. Let $e: S \to G$ be the unit. The co-Lie complex is $\ell_G = Le^*L_{G/S}$, and the Lie complex is $\ell_G^{\vee} = R\underline{\operatorname{Hom}}(\ell_G, \mathcal{O}_S)$. Define $\underline{\ell}_G = L\epsilon^*\ell_G$.

Remark A.0.6. A group scheme G flat over S is always a local complete intersection over S. Then the cotangent complex $L_{G/S}$ has perfect amplitude in [-1, 0], and thus ℓ_G has perfect amplitude in [-1, 0], ℓ_G^{\vee} has perfect amplitude in [0, 1].

If G is smooth over S, then $L_{G/S} = \Omega_{G/S}$ is locally free, and ℓ_G^{\vee} coincides with the Lie algebra Lie(G) of G.

In particular, if $0 \to H \to A \to B \to 0$ is a short exact sequence of commutative group schemes over S, with H finite locally free, and A, B smooth, then ℓ_H^{\vee} is represented be the two-term complex $\text{Lie}(A) \to \text{Lie}(B)$.

Lemma A.0.7 ([III72, Theorem VII.4.2.5]). Let $f: S \to T$ be a map of schemes. Let $i: S \to S'$ be a T-extension by a quasi-coherent module I. Let A be a "schéma en anneaux" over T that is, as a scheme over T, tor-independent (c.f. [FJJ+71, Definition III.1.5]) with both S and S'. Let F (resp. G') be "schéma en A-modules" that are flat and locally of finite presentation over S (resp. S'). Let G be a "schéma en A-module" over S induced by G'. Let $u: F \to G$ be a morphism of "schémas en A-modules". Let K be the complex fitting into the distinguished triangle $K \to \ell_F^{\vee} \to \ell_G^{\vee} \to K[1]$. It is an object in $D(A \otimes_{\mathbb{Z}}^L \mathcal{O})$. Then there is an obstruction $\omega(u, G') \in \operatorname{Ext}_A^2(F, K \otimes_{\mathcal{O}}^L \epsilon^* I)$ which is zero if and only if there exists a pair (F', u') where F' is a deformation of F as "un schéma en A-modules" flat over S' and a map $u': F' \to G'$ extending u.

Lemma A.0.8. Let S be a scheme. Let $i: S \to S'$ be an extension by a quasi-coherent module I. Suppose S and S' are both tor-independent with $\operatorname{Spec}(\mathbb{Z})$. Let F (resp. G') be commutative group schemes over S (resp. S') that are flat and locally of finite presentation. Let G be a commutative group scheme over S induced by G'. Let $u: F \to G$ be a morphism of group schemes over S. Let K be the cone of the map $\ell_F^{\vee} \to \ell_G^{\vee}$. There is an obstruction $\omega(u, G') \in \operatorname{Ext}^1(F, K \otimes^L I)$ which vanishes if and only if there exists a pair (F', u') where F' is a deformation of F as a commutative group scheme that is flat over S', and $u': F' \to G'$ is a map extending u.

Lemma A.0.9 ([Sch15, Theorem III.2.1]). Let A be a ring. Let G and H be commutative group schemes over A that are flat and of finite presentation, with a group map $u : H \to G$. Let $B \to A$ be a squarezero thickening with the argumentation ideal J. Let \tilde{G} be a lift of G to B. Let K be a cone of the map $\ell_H^{\vee} \to \ell_G^{\vee}$ of Lie complexes. Then there is an obstruction class $\omega \in \text{Ext}^1(H, K \otimes^L J)$ which vanishes if and only if there exists a pair (\tilde{H}, \tilde{u}) where \tilde{H} is a flat commutative group scheme over B, and $\tilde{u} : \tilde{H} \to \tilde{G}$ is a map lifting $u : H \to G$. Moreover, the obstruction class is functorial in J, in the following sense. If $B' \to A$ is another square-zero thickening with the argumentation ideal J', with a map $B \to B'$ over A, then $\omega' \in \text{Ext}^1(H, K \otimes^L J')$ is the image of $\omega \in \text{Ext}^1(H, K \otimes^L J)$ under the map $J \to J'$.

APPENDIX B. REVIEW OF PERFECTOID SPACES

Definition B.0.1. Let \mathfrak{Y} be a flat *t*-adic formal scheme over $\mathbb{F}_p[[t^{1/(p-1)p^{\infty}}]]$. Let $\Phi : \mathfrak{Y} \to \mathfrak{Y}$ be the ralative Frobenius. Then the inverse limit $\lim_{\Phi} \mathfrak{Y}$ is representable by a perfect flat *t*-adic formal scheme $\mathfrak{Y}^{\text{perf}}$ over $\mathbb{F}_p[[t^{1/(p-1)p^{\infty}}]]$, called the perfection of \mathfrak{Y} .

Locally,

$$(\operatorname{Spf}(S))^{\operatorname{perf}} = \operatorname{Spf}(S^{\operatorname{perf}})$$

where S^{perf} is the *t*-adic completion of $\lim_{\Phi} S$.

Definition B.0.2. Let \mathcal{Y} be an adic space over $\mathbb{F}_p((t^{1/(p-1)p^{\infty}}))$. Let $\Phi: \mathcal{Y} \to \mathcal{Y}$ be the ralative Frobenius. Then there exists a unique perfectoid space \mathcal{Y}^{perf} over $\mathbb{F}_p((t^{1/(p-1)p^{\infty}}))$, called the perfection of \mathcal{Y} , such that

$$\mathcal{Y}^{\mathrm{perf}} \sim \lim_{\Phi} \mathcal{Y}$$

Locally,

$$\operatorname{Spa}(S, S^+)^{\operatorname{perf}} = \operatorname{Spa}(S^{\operatorname{perf}}, S^{\operatorname{perf}, +})$$

where $S^{\text{perf},+}$ is the *t*-adic completion of $\lim_{\Phi} S^+$, and $S^{\text{perf},+}[1/t]$.

Lemma B.0.3. Let K be a perfectoid field. Let $\mathcal{X}, \mathcal{Y}_1, \mathcal{Y}_2$ be perfectoid spaces over K, with finite étale maps $\mathcal{Y}_1 \to \mathcal{X}$ and $\mathcal{Y}_2 \to \mathcal{X}$. Let $f : \mathcal{Y}_1 \to \mathcal{Y}_2$ be a map over \mathcal{X} . Let $\mathcal{U} \subset \mathcal{X}$ be an open subset such that the restriction map $H^0(\mathcal{X}, \mathcal{O}_{\mathcal{X}}) \to H^0(\mathcal{U}, \mathcal{O}_{\mathcal{U}})$ is injective. If $f|_{\mathcal{U}}$ is an isomorphism, then f is an isomorphism.

Proof. The points of \mathcal{X} where the map of stalks induced by f is an isomorphism is open and closed. If f is not an isomorphism, then there exists a non-trivial idempotent $e \in H^0(\mathcal{X}, \mathcal{O}_{\mathcal{X}})$ such that $e|_{\mathcal{U}} = 1$. However this contradicts the condition that the map $H^0(\mathcal{X}, \mathcal{O}_{\mathcal{X}}) \to H^0(\mathcal{U}, \mathcal{O}_{\mathcal{U}})$ is injective.

Lemma B.0.4. Let (R, R^+) be a Tate Huber pair. There is a bijection of sets between $|\text{Spa}(R, R^+)|$ and the set $\{(L, L^+, \phi)\}/\sim$, where (L, L^+) is a non-discrete affinoid field and $\phi : (R, R^+) \to (L, L^+)$ is a map of Huber pairs such that $\phi(R) \subset L$ is dense.

References

- [FC13] Gerd Faltings and Ching-Li Chai. Degeneration of abelian varieties, volume 22. Springer Science & Business Media, 2013.
- [FJJ⁺⁷¹] D Ferrand, Jean-Pierre Jouanolou, O Jussila, S Kleiman, M Raynaud, and Jean-Pierre Serre. Théorie des Intersections et Théorème de Riemann-Roch: Séminaire de Géométrie Algébrique du Bois Marie 1966/67 (SGA 6), volume 225. Springer, 1971.
- [GR68] Alexander Grothendieck and Michèle Raynaud. Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2). 1968.
- [Hoc69] Melvin Hochster. Prime ideal structure in commutative rings. Transactions of the American Mathematical Society, 142:43–60, 1969.
- [Ill71] Luc Illusie. Complexe cotangent et déformations I, volume 239. Springer, 1971.
- [III72] Luc Illusie. Complexe cotangent et déformations II, volume 283. Springer, 1972.
- [Kot92] Robert E Kottwitz. Points on some shimura varieties over finite fields. Journal of the American Mathematical Society, 5(2):373–444, 1992.
- [Sch12] Peter Scholze. Perfectoid spaces. Publications mathématiques de l'IHÉS, 116(1):245-313, 2012.
- [Sch13a] Peter Scholze. -adic hodge theory for rigid-analytic varieties. In *Forum of Mathematics, Pi*, volume 1, page e1. Cambridge University Press, 2013.
- [Sch13b] Peter Scholze. Perfectoid spaces: a survey, 2013.
- [Sch15] Peter Scholze. On torsion in the cohomology of locally symmetric varieties. Annals of Mathematics, pages 945–1066, 2015.
- [Sta] The Stacks Project Authors. Stacks project.
- [SW13] Peter Scholze and Jared Weinstein. Moduli of *p*-divisible groups. Cambridge Journal of Mathematics, 1(2):145–237, 2013.
- [Wed99] Torsten Wedhorn. Ordinariness in good reductions of shimura varieties of pel-type. In Annales Scientifiques de l'Ecole Normale Supérieure, volume 32, pages 575–618, 1999.

Email address: nietianjiao@outlook.com