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1. Introduction

1.1. Overview. The main result is the following.

Theorem 1.1.1. For any tame level Kp ⊂ GSp2g(A
p
f ) contained in {γ ∈ GSp2g(Ẑp) | γ ≡ 1 mod N} for

some N ≥ 3 prime to p, there exists a perfectoid space X ∗
Γ(p∞),Kp over Qcycl

p such that

X ∗
Γ(p∞),Kp ∼ limm X ∗

Γ(pm),Kp .

Moreover, there is a GSp2g(Qp)-equivariant Hodge–Tate period map

πHT : X ∗
Γ(p∞),Kp → Fℓ.

The strategy is to construct the map πHT in steps.
First we construct a map of the underlying topological spaces

|πHT| : |X ∗
Γ(p∞)|\|ZΓ(p∞)| → |Fℓ|,

which is constructed using the moduli interpretation of Shimura varieties and the Hodge–Tate filtration.

1.2. Notations. Throughout this paper, 0 ≤ ϵ < 1/2 is a number such there exists an element in Zcycl
p of

valuation ϵ, and any such element will be denoted by pϵ ∈ Zcycl
p . We also assume that g ≥ 2.

Definition 1.2.1. Fix an element t ∈ (Zcycl
p )♭ such that |t| = |t♯| = |p|, such that t admits a (p− 1)-th root.

Then we get an identification (Zcycl
p )♭ = Fp[[t

1/(p−1)p∞
]].
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2. Technical tools

2.1. Canonical subgroups.

Definition 2.1.1. Let A → S be an Abelian scheme with S of characteristic p > 0. Let e : S → A be the unit
section. Let ωA/S be the line bundle on S defined as ∧ge∗Ω1

A/S . The Verschiebung map V : A(p) → A induces

a map ωA/S → ωA(p)/S ≃ ω⊗p
A/S , which in turn induces a canonical section Ha(A/S) ∈ H0(S, ω

⊗(p−1)
A/S ), called

the Hasse invariant of A/S.

Definition 2.1.2. Let R be a p-adically complete flat Zcycl
p -algebra. Let A → Spec(R) be an Abelian

scheme. Let A1 → Spec(R1) be its reduction modulo p, where R1 = R/p. For an integer m ≥ 1, the Abelian
scheme A → Spec(R) is said to satisfy the weak O(m, ϵ) condition if

Ha(A1/Spec(R1))
(pm−1)/(p−1) ∈ H0(R1, ω

⊗(pm−1))

divides pϵ, in the sense that there exists u ∈ H0(R1, ω
⊗(1−pm)) such that u ·Ha(A1/Spec(R1))

(pm−1)/(p−1) =
pϵ as elements in R1 = R/p.

The Abelian scheme A → Spec(R) is said to satisfy the strong O(m, ϵ) condition if Ha(A1/R1)
pm

divides
pϵ.

Lemma 2.1.3. Let S be a p-adically complete flat Zcycl
p -algebra. Let G be a finite locally free commutative

group scheme over S. Let C1 ⊂ G ⊗S S/p be a finite locally free subgroup. Assume that for H = (G ⊗S

S/p)/C1, multiplication by pϵ on the Lie complex ℓ∨H is homotopical to zero. Then there exists a finite locally
free subgroup C ⊂ G over S such that C ⊗S S/p1−ϵ = C1 ⊗S/p S/p

1−ϵ.

Proof. We will apply Lemma A.0.9. Take A = S/p, B = S/p2−ϵ, and

B′ = {(x, y) ∈ S/p2−2ϵ × S/p | x = y ∈ R/p1−ϵ}.
The map B → B′ is given by x 7→ (x, x). Let J (resp. J ′) be the kernel of B → A (resp. B′ → A). Then both
J and J ′ are isomorphic to S/p1−ϵ as Abelian groups. The transition map S/p1−ϵ ≃ J → J ′ ≃ S/p1−ϵ is
given by multiplication by pϵ. Let K be the cone of the map ℓ∨C1

→ ℓ∨G⊗SS/p of Lie complexes. Then K ≃ ℓ∨H
by Remark A.0.6. In particular, multiplication by pϵ is homotopic to zero on K. Then the image of the
obstruction o ∈ Ext1(H,K⊗L J) in Ext1(H,K⊗L J ′) is zero. The vanishing of the obstruction immediately
shows the existence of a lift C ⊂ G such that C ⊗S S/p1−ϵ = C1 ⊗S/p S/p

1−ϵ. □

Lemma 2.1.4. Let R be a p-adically complete flat Zcycl
p -algebra. Let X be a scheme over R such that Ω1

X/R

is killed by pϵ for some ϵ > 0. Then the map X(R) → X(R/pδ) is injective for all δ > ϵ.

Proof. Omitted. □

Lemma 2.1.5. Let R be a p-adically complete flat Zcycl
p -algebra. Let A → Spec(R) be an Abelian scheme

satisfying weak O(m, ϵ). Then there is a unique closed subgroup Cm ⊂ A[pm] such that Cm = ker(Fm)
mod p1−ϵ.

Proof. Let H1 = ker(V m : A
(pm)
1 → A1) be the kernel of the m-th composition of the Verschiebung map. We

have a short exact sequence 0 → H1 → A
(pm)
1 → A1 → 0. Taking the Lie complex of each term, we see that

ℓ∨H1
is represented by the complex Lie(A

(pm)
1 ) → Lie(A1). Note that the determinant of Lie(A

(pm)
1 ) → Lie(A1)

is simply

Ha(A1/R1)
(pm−1)/(p−1) ∈ H0(R1, ω

⊗(pm−1)),

which is a direct corollary of the definition of the Hasse variant. It follows that multiplication by Ha(A1/R1)
(pm−1)/(p−1)

on ℓ∨H1
is null-homotopic. As the Abelian scheme A satisfies the weak O(m, ϵ) condition, we conclude that

multiplication by pϵ on ℓϵH1
is null-homotopic. Thus Lemma 2.1.3 shows the exsitence of Cm ⊂ A[pm] such

that

Cm ⊗R R/p1−ϵ = ker(Fm)⊗R1
R/p1−ϵ.

To show that the subgroup Cm is unique, we will directly describe the points of Cm: for every p-adically
complete flat Zcycl

p -algebra R′ with R → R′, we have

Cm(R′) = {s ∈ A[pm](R′) | s ≡ 0 mod p(1−ϵ)/pm

}.
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It sufficies to prove the equality for R′ = R.
Let s ∈ Cm(R). Since Cm⊗RR/p1−ϵ = ker(Fm)⊗R1 R/p1−ϵ, the image of s in A(R/p1−ϵ) = A1(R/p1−ϵ),

denoted by s1−ϵ, lies in the kernel of Fm. Thus s1−ϵ lies in the kernel of A1(R1−ϵ) → A1(Fr
m
∗ R1−ϵ), where

Fr is the absolute Frobenius. Note that s1−ϵ also lies in A1[p
m](R1−ϵ). Hence s ≡ 0 mod p(1−ϵ)/pm

.
Before we prove the converse, we need the following result. Since multiplication by pϵ is null-homotopic

on ℓ∨H1
, we see that pϵ kills Lie(H1)

∨ = e∗ΩH1/R1
. Thus pϵ kills Ω1

H1/R1
. Let H = A[pm]/Cm. Note that

H ⊗R R1−ϵ = H1 ⊗R1
R1−ϵ. Hence Ω1

H⊗RR1−ϵ/R1−ϵ
≃ Ω1

H/R/p
1−ϵ is killed by pϵ. Since Ω1

H/R is p-adically

complete, it follows that Ω1
H/R is killed by the multiplication by pϵ map.

Now let s ∈ A[pm](R) be an element such that s ≡ 0 mod p(1−ϵ)/pm

. By a similar argument as above,
we conclude that s1−ϵ ∈ Cm(R/p1−ϵ) ⊂ A[pm](R/p1−ϵ). Then the image t ∈ H(R) of s is 0 modulo p1−ϵ.
Finally, apple Lemma 2.1.4 with δ = 1 − ϵ, we conclude that t = 0 ∈ H(R), showing that s ∈ Cm(R) as
desired. □

Definition 2.1.6. Let R be a p-adically complete flat Zcycl
p -algebra. We say that an Abelian scheme

A → Spec(R) has a weak canonical subgroup of level m if A → Spec(R) satisfies weak O(m, ϵ) for some
ϵ < 1/2. In that case, we call Cm ⊂ A[pm] in Lemma 2.1.5 the weak canonical subgroup of level m.

If moreover A satisfies the strong O(m, ϵ) condition, then we say that Cm is a strong canonical subgroup.

Lemma 2.1.7. Let R be a p-adically complete flat Zcycl
p -algebra. Let A and B be Abelian schemes over R.

(1) If A has a canonical subgroup Cm ⊂ A[pm] of level m, then it has a canonical subgroup Cm′ ⊂ A[pm
′
]

of every level m′ ≤ m, and Cm′ ⊂ Cm.
(2) Let f : A → B be a map of Abelian schemes. Assume that both A and B have canonical subgroups

Cm ⊂ A[pm] and Dm ⊂ B[pm] of level m. Then Cm maps into Dm under f .
(3) Assume that A has a canonical subgroup Cm ⊂ A[pm] of level m, and let x be a geometric point of

Spec(R[p−1]). Then Cm(x) ≃ (Z/pmZ)g, where g is dimension of the Abelian variety over x.

Proof. Omitted. □

2.2. Hartog’s extension principle. Let’s recall Hartog’s theorem of analytic functions.

Theorem 2.2.1 (Hartog’s Theorem). Let G ⊂ Cn be an open subset with n ≥ 2, and let K be a compact
subset of G. If G\K is connected, then any holomorphic function on G\K can be extended to a holomorphic
function on G in a unique way.

We shall establish several analogies of Hartogs’ theorem.

Lemma 2.2.2 ([GR68, Lemma III.3.1, Proposition III.3.3]). Let X be a locally Noetherian scheme. Let
Z ⊂ X be a closed subscheme. Let F be a coherent OX -module. Let n ≥ 1 be an integer. Then the following
are equivalent:

(1) For any open subscheme V of X, the map

Hi(V,F) → Hi(V \Z,F)

is bijective for i ≤ n− 2 and injective for i = n− 1.
(2) For any open subscheme V of X, the local cohomology

Hi
V ∩Z(V,F) = 0

for all i ≤ n− 1.
(3) For any x ∈ Z the depth of Fx as an OX,x-module is at least n.

Lemma 2.2.3 (Serre’s criterion). A Noetherian ring R is normal if and only if Rp is regular for every p of
height ≤ 1 and Rp has depth ≥ 2 for every p of height ≥ 2.

Lemma 2.2.4. Let R be a normal ring, i.e. the localization Rp is an integrally closed domain for every
prime ideal p of R. Assume R is Noetherian. Let Z ⊂ Spec(R) be a closed subscheme of codimension at
least 2, i.e. every p ∈ Z has height at least 2. Then for U = Spec(R)\Z,

H0(Spec(R),OSpec(R)) ≃ H0(U,OSpec(R)).

Proof. Consider n = 2 and F = OX in Lemma 2.2.2. Serre’s criterion, cf. Lemma 2.2.3, guarantees the third
condition in Lemma 2.2.2. The first assertion gives the desired result. □
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It can also be proved directly as follows.

Lemma 2.2.5. Let X be a locally Noetherian normal scheme. Let U be an open subscheme of X with
codimension ≥ 2. Then the map H0(X,OX) → H0(U,OX) is an isomorphism.

Proof. We may assume that X = Spec(A) where A is normal integral domain. For every non-empty open V
of X, the ring Γ(V,OX) may be considered as a subring of the function field K(X) = Frac(A) such that the
restriction maps are given by inclusions of rings. Let Z be an irreducible closed subset of X of codimension
1. Then U intersects Z non-trivially, so it contains the generic point η of Z. In other words, the subring
Γ(U,OX) of the function field K(X) is contained in the stalk OX,η. But A = Γ(X,OX) is the intersection
of all the stalks OX,η, where η is a prime ideal of height 1; in other words, where η is the generic point of an
irreducible closed subset of codimension 1. □

Lemma 2.2.6. Let R be a topologically finitely generated, flat, and p-adically complete Zp-algebra, such

that R = R/p is normal. Fix f ∈ R such that its reduction f ∈ R is not a zero-divisor. Let 0 < ϵ ≤ 1. Set
S = (R ⊗̂Zp

Zcycl
p )⟨u⟩/(u · f − pϵ). Then S is p-adically complete and flat over Zcycl

p . Fix a closed subscheme

Y ⊂ Spec(R) of codimension ≥ 2. Let Z be the inverse image of Y in Spf(S). Then for U = |Spf(S)|\Z,

S = H0(Spf(S),OSpf(S)) ≃ H0(U,OSpf(S)).

Proof. We first show that the map

S ≃ H0(Spf(S),OSpf(S)) → H0(U,OSpf(S))

is injective. Since S is p-adically separated and H0(U,OSpf(S)) is flat over Zcycl
p , it suffices to show that

Sϵ ≃ H0(Spec(Sϵ),OSpec(Sϵ)) → H0(Uϵ,OSpec(Sϵ))

is injective, where Sϵ = S/pϵ, Zϵ is the inverse image of Y in Spec(Sϵ), and Uϵ = Spec(Sϵ)\Zϵ. Note that

Sϵ = (R ⊗̂Zp
Zcycl
p )⟨u⟩/(uf, pϵ) = Rϵ[u]/(ufϵ)

where Rϵ = R⊗Zp
(Zcycl

p /pϵ) and fϵ ∈ Rϵ is the image of f ∈ R.

Let W ⊂ Spec(Sϵ) be the preimage of V = V (f) ⊂ Spec(R). Then W = V ×Spec(Fp) A1
Zcycl
p /pϵ

is affine.

The map Sϵ → Rϵ sending u to zero induces a section Spec(Rϵ) → Spec(Sϵ). We have a decomposition
Spec(Sϵ) = N∪W , where N = Spec(Rϵ[u]/(u)) ≃ Spec(Rϵ) is the image of the section Spec(Rϵ) → Spec(Sϵ).
Take Vϵ = V ×Spec(Fp) Spec(Zcycl

p /pϵ). Then W = Vϵ ×Spec(Zcycl
p /pϵ) A

1
Zcycl
p /pϵ

, and N ∩W = Vϵ.

We then have the following interpretations:

(1) Each section in Γ(Spec(Sϵ),OSpec(Sϵ)) is a pair (f1, f2) such that f1 ∈ Γ(N,OSpec(Sϵ)) and f2 ∈
Γ(W,OSpec(Sϵ)) such that f1 = f2 on N ∩W = Vϵ.

(2) Each section in H0(Uϵ,OSpec(Sϵ)) is a pair (f1, f2) such that f1 ∈ H0(Uϵ ∩ N,OSpec(Sϵ)), and f2 ∈
H0(Uϵ ∩W,OSpec(Sϵ)), such that f1 = f2 on Uϵ ∩N ∩W .

The (classical) Hartog’s extension principle, i.e. Lemma 2.2.4 applied to Y ⊂ Spec(R), shows that

Γ(Spec(R)\Y ) ≃ Γ(Spec(R)).

Under base-change this gives

Γ(Uϵ ∩N) ≃ Γ(Spec(Y )\Y )⊗Fp
Zcycl
p /pϵ ≃ Γ(Spec(R))⊗Fp

Zcycl
p /pϵ ≃ Γ(N).

Thus injectivity reduces to show that

Γ(V )⊗Fp
(Zcycl

p /pϵ)[u] = Γ(W ) → Γ(Uϵ ∩W ) = Γ(V \Y )⊗Fp
(Zcycl

p /pϵ)[u]

is injective. It suffices to show that Γ(V ) → Γ(V \Y ) is injective, where both V and V \Y are Fp-schemes.

We have depth(OV,y) = depth(Ry) − 1 for all y ∈ V , cf. [Sta, Tag 090R]. Thus depth(OV,y) ≥ 1 for every
x ∈ V ∩ Y by Serre’s criterion, i.e. Lemma 2.2.3. Then the desired injectivity follows from Lemma 2.2.2.

It remains to prove the surjectivity. Let S′ be the u-adic completion of S equipped with the (p, u)-
adic topology. We have a natural injection S → S′. Since u · f = pϵ, the topology of S′ is also u-adic.
Hence |Spf(S′)| = |Spec(Sϵ)| is a closed subspace of |Spf(S)|. The first step is to prove the surjectivity of
S′ → H0(U ∩ |Spf(S′)|,OSpf(S′)). By modulo u, it sufficies to show the surjectivity of

R⊗Fp
Zcycl
p /pϵ = Rϵ → H0(U ∩ Spec(Rϵ),OSpec(Rϵ)) = H0(U ∩ Spec(R),OSpec(R))⊗Fp

Zcycl
p /pϵ.
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Lemma 2.2.4 shows that the map

R → H0(Spec(R)\Y,OSpec(R)) = H0(Spec(R) ∩ U,OSpec(Rϵ))

is an isomorphism. From here the desired surjectivity is clear. □

2.3. Tate’s normalized traces.

Lemma 2.3.1. Let R be a p-adically complete flat Zp-algebra. Let Y1, . . . , Yn ∈ R. Let P1, . . . , Pn ∈
R⟨X1, . . . , Xn⟩ be topologically nilpotent elements, or equivalently, each Pi has topologically nilpotent coef-
ficients in R. Let

S = R⟨X1, . . . , Xn⟩/(Xp
1 − Y1 − P1, . . . , Xn − Yn − Pn).

Then

(1) The ring S is a finite free R-module of rank pn, with a basis given by Xi1
1 · · ·Xin

n with 0 ≤ i1, . . . , in ≤
p− 1.

(2) Let I be the ideal of R generated by p together with all the coefficients of all Pi. Then the trace
map trS/R : S → R sends S to In, i.e. trS/R(S) ⊂ In.

Proof. Omitted. □

Lemma 2.3.2. Let R be a p-adically complete flat Zp-algebra topologically of finite type, formally smooth of

dimension n over Zp. Let f ∈ R such that its reduction f ∈ R = R/p is not a zero-divisor. Let 0 ≤ ϵ < 1/2.
Let

Sϵ = (R ⊗̂Zp
Zcycl
p )⟨uϵ⟩/(uϵ · f − pϵ).

Suppose φ : Sϵ → Sϵ/p is a map of Zcycl
p -algebra such that modulo p1−ϵ it is given by the relative Frobenius.

In other words, φ mod p1−ϵ is the map

R1−ϵ[uϵ]/(f · uϵ − pϵ) → R1−ϵ[uϵ/p]/(f · uϵ/p − pϵ/p),

where R1−ϵ = R⊗Zp
(Zcycl

p /p1−ϵ), which sends uϵ to up
ϵ/p, and restricts to FrR ⊗ id on R1−ϵ. Then

(1) The map

φ[1/p] : Sϵ[1/p] → Sϵ/p[1/p]

is finite and flat of degree pn.
(2) The trace map

tr = trSϵ/p[1/p]/Sϵ[1/p] : Sϵ/p[1/p] → Sϵ[1/p]

sends Sϵ/p into pn−(2n+1)ϵSϵ. Here Sϵ/p[1/p] is viewed as an Sϵ[1/p]-algebra via φ[1/p].

Proof. Omitted. □

2.4. Riemann’s Hebbarkeitssatz.

Definition 2.4.1. Let p be a prime. Let K be a perfectoid field (of any characteristic). Let t be a non-zero
element of K with |p| ≤ |t| < 1. A triple (X ,Z,U), where X is an affinoid perfectoid space over K, Z is a
closed subset of X , and U is a quasi-compact open subset of X\Z, is said to be good, if

H0(X ,O+
X /t)a ≃ H0(X\Z,O+

X /t)a ↪→ H0(U ,O+
U /t)

a.

Remark 2.4.2. This notion is independent of the choice of t, and is compatible with tilting.

Situation 2.4.3. Let K = Fp((t
1/p∞

)). Let R0 be a reduced Tate K-algebra topologically of finite type.
Let X0 = Spa(R0, R

◦
0) be the associated affinoid adic space of finite type over K. Let R be the completed

perfection of R0, which is a p-finite perfectoid K-algebra. Let X = Spa(R,R+) with R+ = R◦, the associated
p-finite affinoid perfectoid space over K. Let I0 be an ideal of R0. Let I = I0R ⊂ R. Let Z0 = V (I0) ⊂ X0.
Let Z = V (I) ⊂ X . Let U0 be a quasi-compact open subset of X0\Z0 with preimage U ⊂ X\Z.

Lemma 2.4.4. Assume Situation 2.4.3. Suppose (X ,Z,U) is good. Suppose that R0 is normal, and that
V (I0) ⊂ Spec(R0) is of codimension ≥ 2. Let R′

0 be a finite normal R0-algebra which is étale outside V (I0),
and such that no irreducible component of Spec(R′

0) maps into V (I0). Let I ′0 = I0R
′
0, and U ′

0 ⊂ X ′
0 the

preimage of U0. Let R
′, I ′, X ′, Z ′, U ′ be the associated perfectoid objects.
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(1) There is a perfect trace pairing

trR′
0/R0

: R′
0 ⊗R0

R′
0 → R0.

(2) The trace pairing induces a trace pairing

trR′◦/R◦ : R′◦ ⊗R◦ R′◦ → R◦.

which is almost perfect.
(3) For all open subsets V ⊂ X with preimage V ′ ⊂ X ′, the trace pairing induces an isomorphism

H0(V ′,O+
X ′/t)

a ≃ HomR◦/t(R
′◦/t,H0(V,O+

X /t))a.

(4) The triple (X ′,Z ′,U ′) is good.
(5) If X ′ → X is surjective, then the map

H0(X ,O+
X /t) → H0(X ′,O+

X ′/t) ∩H0(U ,O+
X /t)

is an almost isomorphism.

Proof. Omitted. □

Lemma 2.4.5. Suppose we have a filtered inductive system (R
(i)
0 )i∈I as in the previous lemma, giving rise

to X (i), Z(i), U (i). Assume that all transition maps X (i) → X (j) are surjective. Let X̃ be the inverse limit of

the X (i) in the category of perfectoid spaces over K, with preimage Z̃ ⊂ X̃ of Z, and Ũ ⊂ X̃ \Û of U . Then
the triple (X̃ , Z̃, Ũ) is good.

Proof. Omitted. □

Lemma 2.4.6. Assume Situation 2.4.3. Let A0 be a ring that is normal, of finite type over Fp, and admitting
a resolution of singularities. Assume further that

(1) R0 = (A0 ⊗̂Fp
K)⟨u⟩/(uf − t) for some non-zero-divisor f ∈ A0.

(2) I0 = JR0 for some ideal J ⊂ A0 with V (J) ⊂ Spec(A0) of codimension ≥ 2.
(3) U0 = {x ∈ X0 | ∃g ∈ J, |g(x)| = 1}.

Then the triple (X ,Z,U) is good.

Proof. Omitted. □

2.5. The Hodge–Tate filtration.

Lemma 2.5.1. Let C be an algebraically closed and complete extension of Qp. Let A → Spec(C) be an
Abelian variety. Then A has its Hodge–Tate filtration

0 → Lie(A)(1) → Tp(A)⊗Zp
C → (Lie(A∨))∗ → 0.

((todo: ...))

3. Siegel Modular Varieties

Let p be a fixed prime.

Definition 3.0.1. The symplectic similitude group GSp2g is the reductive group scheme over Z whose points
in a commutative ring R are given by

GSp2g(R) = {x ∈ GL2g(V );∃ν(x) ∈ R×, xtΩx = ν(x)Ω}

where Ω =

[
0 I
−I 0

]
is the standard symplectic matrix of order 2g.

In the following discussion, we write G = GSp2g. Let Kp = G(Zp). Let K
p be a compact open subgroup

of G(A∞,p) that is contained in

Γ(N)(p) = {g ∈ G(A∞,p); g ≡ 1 mod N}

for some integer N ≥ 3 not divisible by p.
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Definition 3.0.2. Let m ≥ 1 be an integer.

Γ0(p
m) =

{
g ∈ G(Zp); g ≡

[
∗ ∗
0 ∗

]
mod pm

}
Γs(p

m) =

{
g ∈ G(Zp); g ≡

[
∗ ∗
0 ∗

]
mod pm, ν(g) ≡ 1 mod pm

}
Γ1(p

m) =

{
g ∈ G(Zp); g ≡

[
1 ∗
0 1

]
mod pm

}
Γ(pm) =

{
g ∈ G(Zp); g ≡

[
1 0
0 1

]
mod pm

}

Definition 3.0.3. Let S be the Shimura datum associated to a symplectic vector space of dimension 2g.
Then we have the Shimura varieties ShK(S) for every compact open subgroup K ⊂ GSp2g(Af ).

LetX be the scheme over Spec(Z(p)) classifying principally polarized projective Abelian schemes of relative
dimension g with level Kp structures. Let X∗ be the minimal compactification of X as constructed in [FC13,
Chapter V].

For each U ∈ {Γ(pm),Γs(p
m),Γ0(p

m)}, we set XU,Q = ShKpU (S), which is a scheme over Q with certain
moduli interpretations (see Remark 3.0.4).

Let X be the formal scheme over Spf(Zcycl
p ) defined as the p-completion of XZcycl

p
= X ×Spec(Z(p))

Spec(Zcycl
p ).

The universal Abelian scheme A → X gives a line bundle ω = ωA/S = ∧gΩ1
A/X . The sheaf ω extends

to the minimal compactification X∗. The Hasse invariant defines a section Ha ∈ H0(XFp
, ω⊗(p−1)). The

section Ha extends to Ha ∈ H0(X∗
Fp
, ω⊗(p−1)).

Let A → X be the universal formal Abelian scheme.

Remark 3.0.4. The moduli interpretations can be described as follows.

(1) ShKpG(Zp),Z(p)
represents the following problem S 7→ {(A, λ, η)}/ ∼ where

• A is a projective Abelian scheme over S of relative dimension g.
• λ is a principal polarization of A.
• η is a level Kp structure on A.

(2) ShKpΓ(pm),Q represents the following problem S 7→ {(A, λ, η, ηp)}/ ∼ where
• (A, λ, η) ∈ ShKpG(Zp),Z(p)

(S).

• ηp is a level Γ(pm) structure on A.
(3) ShKpΓ0(pm),Q represents the following problem S 7→ {(A, λ, η,D)}/ ∼ where

• (A, λ, η) ∈ ShKpG(Zp),Z(p)
(S).

• D is a totally isotropic subgroup of A[pm].
(4) ShKpΓs(pm),Q represents the following problem S 7→ {(A, λ, η,D, t)}/ ∼ where

• (A, λ, η,D) ∈ ShKpΓ0(pm),Q(S).
• t : µpm → Z/pmZ is an isomorphism.

The first and second results are well-known, cf. [Kot92]. For the last two assertions, use the free action of
U/Γ(pm) on the Shimura variety, where U ∈ {Γ0(p

m),Γs(p
m)}.

Definition 3.0.5. Let X′ be the formal scheme over Spf(Fp[[t
1/(p−1)p∞

]]) given by the t-adic completion of

X ×Spec(Z(p)) Spec(Fp[[t
1/(p−1)p∞

]]). Let X ′ be the generic fiber of the adic space associated to X′. Define

X′∗ and A∗ similarly, with generic fibers X ′∗ and A′.

Definition 3.0.6. Let Xord∗ ⊂ X∗ ×Spec(Z(p)) Spec(Fp) be the locus where the Hasse invariant is invertible.

Then Xord∗ is affine over Fp (as it’s cut out by an ample line bundle). Let Xord ⊂ X ×Spec(Z(p)) Spec(Fp) be

the preimage ofXord∗, which is the ordinary locus. LetDm be the quotient Aord[pm]/Cm, where Aord → Xord

is the universal Abelian variety, and Cm is the canonical subgroup of level m. Let Xord
Γ1(pm) be the scheme

over Xord parametrizing all the isomorphisms Dord
m ≃ (Z/pmZ)g. Then Xord

Γ1(pm) → Xord is finite. Define

Xord∗
Γ1(pm) = Spec(H0(Xord

Γ1(pm),OXord
Γ1(pm)

)).
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Then map Xord∗
Γ1(pm) → Xord∗ is a finite map of affine schemes over Fp, such that Xord

Γ1(pm) is the preimage of

Xord. Also Xord∗
Γ1(pm) is normal.

4. The anti-canonical towers

4.1. The Frobenius tower of formal models.

Lemma 4.1.1. Let S be a p-adically complete Zcycl
p -algebra. There is a bijection

HomSpf(Zcycl
p )(Spf(S),X

∗) ≃ HomSpec(Zcycl
p )(Spec(S), X

∗
Zcycl
p

).

Speculation 4.1.2. ((todo: check: Let Y be a scheme over Spec(Zcycl
p ). Let Y be the formal scheme over

Spf(Zcycl
p ) obtained as the p-completion of Y . Let S be a p-adically complete Zcycl

p -algebra. Then there is a
bijection

HomSpf(Zcycl
p )(Spf(S),Y) ≃ HomSpec(Zcycl

p )(Spec(S), Y ).

))

Definition 4.1.3. Let Nϵ be the functor sending a p-adically complete flat Zcycl
p -algebra S to the set of

pairs (f, [u]), where

• f is a map Spf(S) → X∗; it’s equivalent to a map Spec(S) → X∗
Zcycl
p

by Lemma 4.1.1.

• Let f : Spec(S/p) → X∗
Fp

be the reduction of Spec(S) → X∗
Zcycl
p

. Recall that we have the Hasse

section Ha ∈ H0(X∗
Fp
, ω⊗(p−1)). It pullbacks to f

∗
Ha ∈ H0(Spec(S/p), f

∗
ω⊗(p−1)). Then [u] is an

equivalence class of sections u ∈ H0(Spec(S), f∗ω⊗(1−p)) satisfying u · f∗
Ha = pϵ ∈ S/p under the

equivalence relation that u ∼ u′ if and only if there exists some h ∈ S such that u′ = u(1 + p1−ϵh).

Lemma 4.1.4. Then the functor Nϵ is representable by a formal scheme flat over Spf(Zcycl
p ). For Spf(R) ⊂

X∗
Zp
, we have

Nϵ ×X∗ Spf(R ⊗̂Zp
Zcycl
p ) = Spf((R ⊗̂Zp

Zcycl
p )⟨u⟩/(uH̃a− pϵ))

where H̃a ∈ H0(Spec(R), ω⊗(p−1)) is a lift of Ha ∈ H0(Spec(R/p), ω⊗(p−1)).

Definition 4.1.5. Let X(ϵ) → X be the pullback of X∗(ϵ) → X∗ along X → X∗. Let A(ϵ) → X(ϵ) be the
pullback of A → X along X(ϵ) → X.

Let X be the generic fiber of the adic space associated to the formal scheme X. Let X (ϵ) be the generic
fiber of the adic space associated to X(ϵ). Then X admits an open embedding to the Xad, the adic space
associated to the scheme XQcycl

p
. Let XΓs(pm) be the inverse image of X under the map Xad

Γs(pm) → Xad.

Remark 4.1.6. ((todo: moduli interpretation of X(ϵ). Should be almost identical to Mϵ.))

Definition 4.1.7. For a formal schemeY over Zcycl
p and a ∈ Zcycl

p , we writeY/a forY×Spf(Zcycl
p )Spf(Z

cycl
p /a).

Definition 4.1.8. For a formal scheme Y over Zcycl
p /p, we write Y(p) for the pullback of Y along the

(absolute) Frobenius Spf(Zcycl
p /p) → Spf(Zcycl

p /p).

Lemma 4.1.9. We have a natural isomorphism

(X∗(p−1ϵ)/p)(p) ≃ X∗(ϵ)/p

of formal schemes over Spf(Zcycl
p /p). Furthermore, by pullback we get the following commutative diagram

(A(p−1ϵ)/p)(p) (X(p−1ϵ)/p)(p) (X∗(p−1ϵ)/p)(p)

A(ϵ)/p X(ϵ)/p X∗(ϵ)/p

where each vertical map is an isomorphism.
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Proof. Let S be a ((discrete? flat)) (Zcycl
p /p)-algebra. Then

(X∗(p−1ϵ)/p)(p)(S) = (X∗(p−1ϵ)/p)(Fr∗S),

where Fr∗S is the the (Zcycl
p /p)-algebra obtained from S by precomposing with Fr : Zcycl

p /p → Zcycl
p /p. Each

map Spf(Fr∗S) → X∗(p−1ϵ)/p is equivalent to a pair (f, [u]), where

• f : Spec(Fr∗S) → X∗
Zcycl
p

is a map over Spec(Zcycl
p ).

• u ∈ H0(Spec(Fr∗S), f
∗ω⊗(1−p)) is a section such that u·f∗Ha = pp

−1ϵ ∈ Fr∗S. Note that (Fr∗S)/p =
Fr∗S since S is defined over Zcycl

p /p.

Recall that X∗
Zcycl
p

= X∗
Zp

×Spec(Zp)Spec(Zcycl
p ), and thus (f, [u]) is equivalent ((todo: should be more precise))

to the following datum

• f : Spec(Fr∗S) → X∗
Zp

is a map over Spec(Zp).

• ((todo: Check the reduction of u)) u ∈ H0(Spec(Fr∗S), f
∗ω⊗(1−p)) is a section such that u · f∗Ha =

pp
−1ϵ ∈ Fr∗S.

Note that the Frobenius on Zp/p = Fp is simply the identity, and thus the map Spec(Fr∗S) → Spec(Zp)

is identical to Spec(S) → Spec(Zp). But under this identification the element pp
−1ϵ ∈ Fr∗S corresponds to

pϵ ∈ S. Then f : Spec(Fr∗S) → X∗
Zp

can be reinterpreted as a map g : Spec(S) → X∗
Zp

over Spec(Zp). We

write v = u for clarity. The section v then satisfies v · g∗Ha = pϵ ∈ S. The pair (g, [v]) then corresponds to
a map Spf(S) → X∗(ϵ)/p over Spf(Zcycl

p /p). □

Lemma 4.1.10. The Frobenius map Spf(Zcycl
p /p) → Spf(Zcycl

p /p) induces the following commutative dia-
gram

A(p−1ϵ)/p X(p−1ϵ)/p X∗(p−1ϵ)/p

(A(p−1ϵ)/p)(p) (X(p−1ϵ)/p)(p) (X∗(p−1ϵ)/p)(p)

Proof. This follows from the universal property of pullback. □

Remark 4.1.11. ((todo: Explain the moduli interpretation of

X∗(p−1ϵ)/p → (X∗(p−1ϵ)/p)(p) ≃ X∗(ϵ)/p.

))

Speculation 4.1.12. ((todo: check: Let S be a p-adically complete flat Zcycl
p -algebra. Let f : Spf(S) → X

be a map over Spf(Zcycl
p ). Let A → Spec(S) be the corresponding Abelian scheme. Suppose A → Spec(S)

satisfies strong O(1, ϵ). Let C be the strong canonical subgroup of A → Spec(S) of level 1. Then B = A/C
satisfies weak O(1, ϵ). ))

Speculation 4.1.13. ((todo: cf. [Wed99] ))

Lemma 4.1.14. There is a unique commutative diagram

A(p−1ϵ) X(p−1ϵ) X∗(p−1ϵ)

A(ϵ) X(ϵ) X∗(ϵ)

that is identified with the following commutative diagram from Lemma 4.1.9 and Lemma 4.1.10, after modulo
p1−ϵ.

A(p−1ϵ)/p X(p−1ϵ)/p X∗(p−1ϵ)/p

(A(p−1ϵ)/p)(p) (X(p−1ϵ)/p)(p) (X∗(p−1ϵ)/p)(p)

A(ϵ)/p X(ϵ)/p X∗(ϵ)/p
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Proof. ((todo: finish the proof: The map X(p−1ϵ) → X(ϵ) comes from the moduli interpretation, the weak
canonical subgroup, and the Hasse invariant. Then A(p−1ϵ) → A(ϵ) is obtained by base-change. The
extension to X∗(p−1ϵ) → X∗(ϵ) is done using Hartog’s extension principle. ))

We first construct the map X(p−1ϵ) → X(ϵ). Let S be a p-adically complete flat Zcycl
p -algebra. Let (f, [u])

be a pair where

• f : Spf(S) → X is a map of formal schemes over Spf(Zcycl
p ); its equivalent to a map f : Spec(S) →

XZcycl
p

.

• u ∈ H0(Spec(S), f∗ω⊗(1−p)) is a section such that u · f∗
Ha = pp

−1ϵ ∈ S/p.

The map f : Spec(S) → XZcycl
p

gives an Abelian scheme A → Spec(S) ((todo: with principal polarization

and level Kp structure)). We claim that A → Spec(S) satisfies strong O(1, ϵ), i.e. Ha(A1/Spec(S1))
p divides

pϵ. This follows from

pp
−1ϵ = u · f∗

Ha = u ·Ha(A1/Spec(S1)).

Let C ⊂ A[p] be the strong canonical subgroup of level 1. We get an Abelian scheme A/C → Spec(S) ((todo:
explain: equipped with induced polarization and level structure: use totally isotropic)), which corresponds
to a map g : Spec(S) → XZcycl

p
. This gives a map X(p−1ϵ) → X. We will show next that it can be factored

as X(p−1ϵ) → X(ϵ) → X.
((seems wrong: Then we declare that the pair (f, [u]) gets mapped to the pair (g, [up]). ))
((seems wrong: By Speculation 4.1.12, the quotient A/C → Spec(S) satisfies weak O(1, ϵ), i.e. there exists

a section v ∈ H0(Spec(S), g∗ω⊗(1−p)) such that v · g∗Ha = pϵ. Then we declare that the pair (f, [u]) gets
mapped to the pair (g, [v]). We need to check that [v] is well-defined. ((wrong!)) It suffices to show that
g∗Ha = Ha((A/C)1/S1) is not a zero-divisor. Otherwise, for every geometric point x of Spec(S), the Abelian
scheme (A/C)x is not ordinary. This contradicts Speculation 4.1.13. Therefore we obtain a well-defined map
X(p−1ϵ) → X(ϵ). ))

Let B = A/C. We have

pϵ = up ·Ha(A1/Spec(S1))
p = up ·Ha(A

(p)
1 /Spec(S1)).

Modulo p1−ϵ,

pϵ = up ·Ha(A
(p)
1−ϵ/Spec(S1−ϵ)) = up ·Ha(B1−ϵ/Spec(S1−ϵ)).

Thus there is v ∈ H0(Spec(S), g∗ω⊗(1−p)) such that v = up mod p1−ϵ and v·Ha(B1/Spec(S1)) = pϵ mod p1−ϵ.
Hence

v ·Ha(B1/Spec(S1)) = pϵ + p1−ϵt = pϵ(1 + p1−2ϵt) ∈ S/p

for some t ∈ S.
((check: 1 + p1−2ϵt is invertible in S)) Then

(1 + p1−2ϵt)−1v ·Ha(B1/Spec(S1)) = pϵ ∈ S/p.

(This shows that B is weak O(1, ϵ).) We claim that the pair (f, [u]) gets mapped to the pair (g, [(1 +
p1−2ϵt)−1v]).

• First check this map is well-defined.
– Any choice u′ ∈ [u] leads to up = (u′)p mod p1−ϵ.
– Now choose another lift v + p1−ϵv′ of v.

•
Another attempt at constructing the factorization X(p−1ϵ) → X(ϵ) → X.

• We already know that B is weak O(1, ϵ), i.e. there exists a section v ∈ H0(Spec(S/p), g∗ω⊗(1−p))
such that

v ·Ha(B1/S1) = pϵ mod p.

• Modulo p1−ϵ,

pϵ = v ·Ha(B1−ϵ/S1−ϵ) = v ·Ha(A
(p)
1−ϵ/S1−ϵ) = up ·Ha(A

(p)
1−ϵ/S1−ϵ) mod p1−ϵ.

• Then

(v − up) ·Ha(A
(p)
1−ϵ/S1−ϵ) = 0 mod p1−ϵ.

• Maybe Ha(A
(p)
1−ϵ/S1−ϵ) is not a zero-divisor in S/p1−ϵ.
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• Then v = up mod p1−ϵ.

Another attempt at constructing the factorization X(p−1ϵ) → X(ϵ) → X.

• Let Spf(R) ⊂ X on which ω is trivial.

• Choose a lift H̃a ∈ H0(Spec(R), ω⊗(p−1)) of Ha ∈ H0(Spec(R/p), ω⊗(p−1)).
• We want

Spf(R⟨u⟩/(u · H̃a− pϵ))

Spf(R⟨u⟩/(u · H̃a− pp
−1ϵ)) Spf(R).

In other words,

R⟨u⟩/(u · H̃a− pϵ)

R⟨u⟩/(u · H̃a− pp
−1ϵ) R.

We need to show that X(p−1ϵ) → X(ϵ) extends to X∗(p−1ϵ) → X∗(ϵ) ((cf. the remark in Lemma 4.1.4)).

• We’d like to apply Lemma 2.2.6 for the case g ≥ 2.
• Let Spf(R) ⊂ X∗

Zp
((such that ω⊗(p−1) is trivial on Spf(R))). This gives an affine open Spf(R ⊗̂Zp

Zcycl
p ) of X∗, and such affines cover X∗.

• Check that R is a topologically finitely generated flat p-adically complete Zp-algebra, and that R/p
is normal.

• Check that Ha ∈ H0(Spec(R/p), ω⊗(p−1)) ≃ R/p not a zero-divisor, where ω is the natural (ample)
line bundle on X∗

Fp
.

– Spec(R/p) is an affine open in X∗
Fp

as Spec(R) is an affine open of X∗
Zp
.

– We have inclusion of opens

Xord
Fp

⊂ XFp
⊂ X∗

Fp
.

The first inclusion is dense by Lemma ??, and the second is dense by the property of minimal
compactification ((todo: add reference)).

– Thus the intersection

Spec(R/p) ∩Xord
Fp

is non-empty.
– Therefore Ha is not a zero-divisor since it is non-zero at a point.

• We need a map

X∗(p−1ϵ)×X∗ Spf(R ⊗̂Zp
Zcycl
p ) → X∗(ϵ)×X∗ Spf(R ⊗̂Zp

Zcycl
p )

• Choose a lift H̃a ∈ H0(Spec(R), ω⊗(p−1)) ≃ R of Ha ∈ R/p.

• Let Sϵ = (R ⊗̂Zp
Zcycl
p )⟨u⟩/(u · H̃a − pϵ). Let Sp−1ϵ = (R ⊗̂Zp

Zcycl
p )⟨u⟩/(u · H̃a − pp

−1ϵ). Then we
need a map

Spf(Sp−1ϵ) Spf(Sϵ)

X∗(p−1ϵ) X∗(ϵ)

• Consider the pullback diagram

U Spec(R/p)

XFp X∗
Fp
.

Then U is an open in Spec(R/p). Let Y be the complement of U in Spec(R/p).
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• Check that Y has codimension ≥ 2 in Spec(R/p). This follows from that Y ∩ XFp = ∅ and that
boundary of X∗

Fp
has codimension g ≥ 2.

• Let Z be the preimage of Y in Spf(Sϵ). Then Lemma 2.2.6 shows that the natural map

H0(Spf(Sϵ),OSpf(Sϵ)) → H0(Spf(Sϵ)\Z,OSpf(Sϵ))

is an isomorphism.
• Define U by the pullback diagram

U Spf(R ⊗̂Zp Zcycl
p )

X X∗.

• Now we need to construct

X(p−1ϵ)×X U Spf(Sp−1ϵ)

X(ϵ)×X U Spf(Sϵ).

• We claim that X(ϵ)×X U = Spf(Sϵ)\Z.

□

4.2. The anti-canonical tower of level Γs.

Construction 4.2.1. Let m ≥ 1.
We first construct a map X(p−mϵ) → X. Let S be a p-adically complete flat Zcycl

p -algebra. Let Spf(S) →
X(p−mϵ) be a map over Spf(Zcycl

p ). It corresponds to a pair (f, [u]) where

• f : Spec(S) → XZcycl
p

is a map over Spec(Zcycl
p ).

• u ∈ H0(Spec(S), f∗ω⊗(1−p)) is a section such that u · f∗
Ha = pp

−mϵ in S/p.

The map f : Spec(S) → XZcycl
p

gives an Abelian scheme A → Spec(S). The section u shows that A → Spec(S)

satisifies strong O(m, ϵ), and thus has a strong canonical subgroup Cm ⊂ A[pm] of level m. The Abelian
scheme A/Cm → Spec(S) has induced principal polarization and level structure, and thus corresponds to a
map Spec(S) → XZcycl

p
, which gives a map Spf(S) → X over Spf(Zcycl

p ).

Passing to the adic fiber (i.e. the generic fiber of the associated adic space), we get a map X (p−mϵ) → X
of adic spaces. Now we construct a factorization X (p−mϵ) → XΓs(pm) → X , where the map XΓs(pm) → X is
given by the moduli interpretation “(A,D) 7→ A/D”.

((todo: construct the factorization))

Lemma 4.2.2. For each m ≥ 1, the X (p−mϵ) → XΓs(pm) extends uniquely to X ∗(p−mϵ) → X ∗
Γs(pm), and

both maps are open immersions of adic spaces. Moreover, the following diagram

X ∗(p−m−1ϵ) X ∗
Γs(pm+1)

X ∗(p−mϵ) X ∗
Γs(pm)

is a pullback diagram for all m ≥ 1, where the vertical map on the left is induced from the map X(p−m−1ϵ) →
X(p−mϵ), cf. Lemma 4.1.14.

Proof. ((todo: write down the proof))

• Extension to minimal compactification:
• Open immersion:

– The map θ : XQcycl
p

→ XQcycl
p

defined by A 7→ A/A[pm] is an isomorphism.
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– The following diagram

X (p−mϵ) X

Xad Xadθ

commutes.
– So the composition X ∗(p−mϵ) → XΓs(pm) → X is an open immersion.
– The map XΓs(pm) → X is finite étale.

– Thus the map X (p−mϵ) → XΓs(pm) is an open immersion.
– Then pass to minimal compactification as follows.
– We’d like to apply Lemma 2.2.6.

• Pullback diagram:
– First show that

X (p−m−1ϵ) XΓs(pm+1)

X (p−mϵ) XΓs(pm)

is pullback diagram.
– Commutativity of the diagram:
– It is a pullback since both vertical maps are finite étale of degree pg(g+1)/2.
– Then pass to minimal compactification.

□

Definition 4.2.3. Let XΓs(p)(ϵ) be the pullback of X (ϵ) along XΓs(p) → X .

Lemma 4.2.4. The following diagram

X (p−1ϵ) XΓs(p)(ϵ)

X (ϵ) X (ϵ)id

commutes. Moreover, the map X (p−1ϵ) → XΓs(p)(ϵ) is an open immersion, and the image of X (p−1ϵ) in
XΓs(p)(ϵ) is both open and closed.

Definition 4.2.5. ((todo: how to make this statement precise? do we actually need this?: Let XΓs(p)(ϵ)a
be the open and closed subset of XΓs(p)(ϵ) “parametrizing those D ⊂ A(ϵ)[p] with D ∩ C = {0}”. ))

Let XΓs(p)(ϵ)a be the image of X (p−1ϵ) in XΓs(p)(ϵ). Let X ∗
Γs(p)

(ϵ)a be the image of X ∗(p−1ϵ) in X ∗
Γs(p)

(ϵ).

Let X ∗
Γs(pm)(ϵ)a be the pullback of X ∗

Γs(p)
(ϵ)a along X ∗

Γs(pm)(ϵ) → X ∗
Γs(p)

(ϵ).

Remark 4.2.6. X ∗
Γs(p)

(ϵ)a is both open and closed in X ∗
Γs(p)

(ϵ).

Lemma 4.2.7. For m sufficiently large, X ∗
Γs(pm)(ϵ)a is affinoid.

Proof. ((todo: write down the proof))

• There exists an integer m ≥ 0 such that Hi(X∗
Zp
, ω⊗pm(p−1)) = 0 for all i ≥ 1, since ω is an ample

line bundle on X∗
Zp
.

• We can find a lift s ∈ H0(X∗
Zp
, ω⊗pm(p−1)) lifting Hap

m

∈ H0(X∗
Fp
, ω⊗pm(p−1)). ((todo: add a proof;

should follows from vanishing of first cohomology; maybe use a short exact sequence of quasi-coherent
OX -modules, and then pass to a long exact sequence))

• The condition |Ha| ≥ |p|p−mϵ is equivalent to |s| ≥ |p|ϵ.
• The condition defines an affinoid space X ∗(p−mϵ) ≃ X ∗

Γs(pm)(ϵ)a.

□
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Lemma 4.2.8. There exists a unique perfectoid space X ∗
Γs(p∞)(ϵ)a such that

X ∗
Γs(p∞)(ϵ)a ∼ limm X ∗

Γs(pm)(ϵ)a.

Similar results hold for XΓs(p∞)(ϵ)a and AΓs(p∞)(ϵ)a.

Proof. ((todo: use tilting))

• Define
X∗

Γs(p∞)(ϵ)a = limm X(p−mϵ),

where the inverse limit is taken in the category of formal schemes over Spf(Zcycl
p ). Note that the

transition maps are finite.
• Let Spf(Rm0

) ⊂ X(p−m0ϵ) be affine. Let Spf(Rm) ⊂ X(p−mϵ) be the preimage of Spf(Rm0
) for

m ≥ m0.
• We get an affine open Spf(R∞) of X∗

Γs(p∞)(ϵ)a, where R∞ is the p-adic completion of colimm Rm.

Then R∞ is flat over Zcycl
p .

• The transition map Rm/p1−ϵ → Rm+1/p
1−ϵ agrees with the relative Frobenius. The absolute Frobe-

nius then induces an isomorhpism

R∞/p(1−ϵ)/p = colimm Rm+1/p
(1−p)/p ≃ colimm Rm/p1−ϵ = R∞/p1−ϵ.

• Thus Ra
∞ is a perfectoid Zcycl,a

p -algebra, cf. [Sch12, Definition 5.1.(ii)].

• Then R∞[1/p] is a perfectoid Qcycl
p -algebra, cf. [Sch12, Lemma 5.6].

• Then the generic fiber of X∗
Γs(p∞)(ϵ)a is a perfectoid space X ∗

Γs(p∞)(ϵ)a over Qcycl
p , and

X ∗
Γs(p∞)(ϵ)a ∼ limm X ∗

Γs(pm)(ϵ)a,

cf. [SW13, Definition 2.4.1, Proposition 2.4.2].
• Uniqueness follows from [SW13, Proposition 2.4.5].

□

Lemma 4.2.9. The tilt X ∗
Γs(p∞)(ϵ)

♭
a identifies naturally with the open subset X ′∗perf(ϵ) ⊂ X ′∗perf where

|Ha| ≥ |t|ϵ. The similar result holds for A.

Proof. ((todo: split the proof))

• We define X′∗(ϵ) → X′∗ in a way similar to X∗(ϵ) → X∗, parametrizing sections u ∈ ω⊗(1−p) such
that u ·Ha = tϵ.

• We have the map
X′∗(p−1ϵ) → X′∗(ϵ)

given by the raltive Frobenius.
• The inverse limit limm X′∗(p−mϵ) is representable by a perfect flat formal scheme over Fp[[t

1/(p−1)p∞
]]

which is naturally the same as X′∗(ϵ)perf .
• Its generic fiber is thus a perfectoid space over Fp((t

1/(p−1)p∞
)), that is identified with the open

subset of X ′∗perf where |Ha| ≥ |t|ϵ.
• We have a canonical identification

X′∗(p−mϵ)/t1−ϵ ≃ X∗(p−mϵ)/p1−ϵ

compatible with transition maps.
• For an open affine Spf(Rm0

) ⊂ X∗(p−mϵ) with preimages Spf(Rm), we get affine opens Spf(Sm) ⊂
X′∗(p−mϵ), with

Sm/t1−ϵ = Rm/p1−ϵ.

• Let R∞ be the p-adic completion of colimm Rm. Let S∞ be the t-adic completion of colimm Sm.
• Then Spf(R∞) ⊂ XΓs(p∞)(ϵ)a and Spf(S∞) ⊂ X′∗(ϵ)perf give corresponding open subsets, and

R∞/p1−ϵ = colimm Rm/p1−ϵ = colimm Sm/t1−ϵ = S∞/t1−ϵ.

• It follows that R∞[1/p] and S∞[1/t] are tilts by [Sch12, Theorem 5.2].

□

Lemma 4.2.10. The space X ∗
Γs(p∞)(ϵ)a is affinoid.
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Proof. ((todo: use tilting))

• It suffices to check for the tilts.
• The open subset X ′∗(ϵ) ⊂ X ′∗ given by |Ha| ≥ |ϵ|ϵ is affinoid.

□

4.3. Lifting to level Γ1.

4.3.1. Specialized version of Tate’s normalized trace.

Lemma 4.3.1. Let XΓs(p∞)(ϵ)a be the formal scheme over Spf(Zcycl
p ) defined as

XΓs(p∞)(ϵ)a = limm X(p−mϵ).

Let 0 ≤ m ≤ m′. Then

(1) The maps

1/p(m
′−m)g(g+1)/2tr : OX(p−m′ ϵ)[1/p] → OX(p−mϵ)[1/p]

are compatible for varying m′, and thus induces a map

trm : limm′ OX(p−m′ ϵ)[1/p] → OX(p−mϵ)[1/p].

(2) The image of trm is contained in p−CmOX(p−mϵ) for some constant Cm, with Cm → 0 as m → +∞.

Thus trm extends by continuity to a map

trm : OXΓs(p∞)(ϵ)a [1/p] → OX(p−mϵ)[1/p],

called Tate’s normalized trace.
(3) For every x ∈ OXΓs(p∞)(ϵ)a [1/p], we have

x = limm→+∞ trm(x).

Proof. Omitted. □

4.3.2. A general result.

Situation 4.3.2. Let an integer m ≥ 1 which is sufficiently large such that X ∗
Γs(pm)(ϵ)a is affinoid, cf.

Lemma 4.2.7. Let Y∗
m → X ∗

Γs(pm)(ϵ)a be a finite morphism. Let Ym → XΓs(pm)(ϵ)a be the pullback of

Y∗
m → X ∗

Γs(pm)(ϵ)a along XΓs(pm)(ϵ)a → X ∗
Γs(pm)(ϵ)a. Assume that

(1) The map Ym → XΓs(pm)(ϵ)a is finite étale.
(2) Y∗

m is normal.
(3) None of the irreducible components of Y∗

m is mapped into the boundary of X ∗
Γs(pm)(ϵ)a.

For m′ ≥ m, define Y∗
m′ → X ∗

Γs(pm′ )
(ϵ)a to be the ((todo: normalization??)) pullback of Y∗

m → X ∗
Γs(pm)(ϵ)a

along X ∗
Γs(pm′ )

(ϵ)a → X ∗
Γs(pm)(ϵ)a. Define Ym′ → XΓs(pm′ )(ϵ)a by pullback. Let Y∞ be the pullback of Ym

to XΓs(p∞)(ϵ)a, which exists as Ym → XΓs(pm)(ϵ)a is finite étale.

Since every X ∗
Γs(pm′ )

(ϵ)a is affinoid, each Y∗
m′ is affinoid. We write Y∗

m′ = Spa(Sm′ , S+
m′).

((todo: scholze says S+
m′ = S◦

m′??))

Lemma 4.3.3. In the Situation 4.3.2, we have

(1) For all m′ ≥ m,

S+
m′ = H0(Ym′ ,O+

Ym′ ).

(2) The map

colimm′ S+
m′ → H0(Y∞,O+

Y∞
)

is injective with dense image. Moreover, there is a canonical continuous retraction

H0(Y∞,OY∞) → Sm′ .
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(3) Assume that S∞ = H0(Y∞,OY∞) is a perfectoid Qcycl
p -algebra. Then

Y∗
∞ = Spa(S∞, S+

∞)

where S+
∞ = S◦

∞, is an affinoid perfectoid space over Qcycl
p , and

Y∗
∞ ∼ limm′ Y∗

m′ ,

and S+
∞ is the p-adic completion of colimm′ S+

m′ .

Proof. Proof of (1). By replacing m with m′, it sufficies to prove the claim for m′ = m. The desired
isomorphism is automatic if we have the following isomorphism

Sm ≃ H0(Ym,OYm).

Write R = H0(X ∗
Γs(pm)(ϵ)a,OX∗

Γs(pm)
(ϵ)a). By the assumption, the map R → Sm is finite and étale away

from boundary (recall that m is sufficiently large such that X ∗
Γs(pm)(ϵ)a is affinoid). Let Z ⊂ Spec(R) be

the boundary, which is of codimension ≥ 2. Then the preimage Z ′ ⊂ Spec(Sm) is also of codimension ≥ 2
by Condition (3) in Situation 4.3.2. Both Sm and R are normal and Noetherian. Hence Lemma 2.2.4 shows
that

Sm = H0(Spec(Sm)\Z ′,OSpec(Sm)), R = H0(Spec(R)\Z,OSpec(R)).

Since the map R → Sm is finite étale away from boundary, we have a trace map OSpec(Sm)|Spec(Sm)\Z′ →
OSpec(R)|Spec(R)\Z . Taking global sections and identifying using the two isomorphisms above, we obtain the
map trSm/R : Sm → R. The next claim is that the associated pairing

Sm ⊗R Sm → R, s1 ⊗ s2 7→ trSm/R(s1s2)

induces an isomorphism Sm ≃ HomR(Sm, R). To see this, let s1 ∈ Sm be an element lying in the kernel.
Then it lies in the kernel of the pairing away from the boundary, on which it is perfect as R → Sm is
finite étale away from the boundary. Hence s1 = 0 away from the boundary, and thus is zero (by Hartog’s
extension principle, again). Similarly, any element of HomR(Sm, R) comes from a unique eleement of Sm

away from the boundary, and thus from an element of Sm.
For an affinoid open subset U of X ∗

Γs(pm)(ϵ)a with preimage V ⊂ Y∗
m, repeat the argument above, and we

obtain an isomorphism

H0(V,OY∗
m
) ≃ HomR(Sm, H0(U ,OX∗

Γs(pm)
(ϵ)a)).

These isomorphisms can be glued such that the same isomorphism holds for every open subset U ⊂
X ∗

Γs(pm)(ϵ)a. Take U = XΓs(pm)(ϵ)a and we are done.

Proof of (2). We need to show that the map colimm′ H0(Ym′ ,O+
Ym′ ) → H0(Y∞,O+

Y∞
) is injective. ((todo))

Proof of (3). This is a direct corollary of (2). □

4.3.3. xxx.

Definition 4.3.4. Note that on the tower XΓs(pm)(ϵ)a, we have the tautological Abelian variety At
Γs(pm)(ϵ)a

(which are related to each other by pullback), as well as the Abelian varieties AΓs(pm)(ϵ)a = A(p−mϵ) over

XΓs(pm)(ϵ)a ≃ X (p−mϵ). They are related by an isogeny

AΓs(pm)(ϵ)a → At
Γs(pm)(ϵ)a

whose kernel is the canonical subgroup Cm ⊂ AΓs(pm)(ϵ)a[p
m] of level m. We get an induced subgroup

Dm = AΓs(pm)(ϵ)a[p
m]/Cm ⊂ At

Γs(pm)(ϵ)a.

Let DmΓs(pm′ ) be the pullback of Dm to XΓs(pm′ )(ϵ)a for m′ ≥ m. We have

DmΓs(pm′ ) = Dm′ [pm
′
].

Also, the Dm give the Γs(p
m) level structure. Let DmΓs(p∞) be the pullback of Dm to XΓs(p∞)(ϵ)a. Since

Dm → XΓs(pm)(ϵ)a is finite étale, DmΓs(p∞) is a perfectoid space.

Lemma 4.3.5. The map

AΓs(p∞)(ϵ)a[p
m] → DmΓs(p∞)

is an isomorphism of perfectoid spaces.
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Proof. Let (R,R+) be a perfectoid affinoid Qcycl
p -algebra. Then

AΓs(p∞)(ϵ)a[p
m](R,R+) = limm′ AΓs(pm′ )(ϵ)a[p

m](R,R+)

The transition map

AΓs(pm′+m)(ϵ)a[p
m] → AΓs(pm′ )(ϵ)a[p

m]

kills the canonical subgroup Cm of level m (of AΓs(pm′+m)(ϵ)a), so it factors as

AΓs(pm′+m)(ϵ)a[p
m] → AΓs(pm′+m)(ϵ)a[p

m]/Cm = DmΓs(pm′+m) → AΓs(pm′ )(ϵ)a[p
m].

This shows that the desired isomorphism holds, since

DmΓs(p∞)(R,R+) = limm′ DmΓs(pm′ )(R,R+).

□

Definition 4.3.6. Let D′
m be the quotient A′(ϵ)[pm]/C ′

m, where C ′
m denotes the canonical subgroup of level

m of A′(ϵ). We have D′
m → X ′(ϵ) ⊂ X ′. Note that all Abelian varieties over Fp((t

1/(p−1)p∞
)) parametrized

by X ′(ϵ) are ordinary, as the Hasse invariant divides tϵ which is invertible.

Lemma 4.3.7. The tilt of DmΓs(p∞) identifies canonically with the perfection of D′
m.

Proof. Recall from the uniqueness of canonical subgroups (cf. Lemma 2.1.5) that

C ′
m(R′) = {s ∈ A′(ϵ)[pm](R′) | s ≡ 0 mod p(1−ϵ)/pm

}.

So C ′
m is the killed by the Frobenius map. Thus passing to perfection kills C ′

m, and hence

D′perf
m = A′(ϵ)[pm]perf .

Recall that AΓs(p∞)(ϵ)
♭
a ≃ A′(ϵ)perf , cf. Lemma 4.2.9, we conclude that

D′perf
m = AΓs(p∞)(ϵ)a[p

m]♭.

Finally, combine with Lemma 4.3.5 and we obtain

D′perf
m = D♭

mΓs(p∞).

□

Definition 4.3.8. Let X ′∗
Γ1(pm)(ϵ) be the open locus of the adic space associated with

Xord∗
Γ1(pm) ⊗Fp

Fp((t
1/(p−1)p∞

))

where |Ha| ≥ |t|ϵ. Then
X ′∗

Γ1(pm)(ϵ) → X ′∗(ϵ)

is finite, and étale away from the boundary. In particular, the base-change X ′
Γ1(pm)(ϵ) → X ′(ϵ) ⊂ X ′∗(ϵ) is

finite étale, parametrizing isomorphisms D′
m ≃ (Z/pmZ)g. Let Z ′∗(ϵ) ⊂ X ′∗(ϵ) denote the boundary, with

pullback Z ′∗
Γ1(pm)(ϵ) ⊂ X ′∗

Γ1(pm)(ϵ).

Lemma 4.3.9. The triple (X ′∗(ϵ)perf ,Z ′∗(ϵ)perf ,X ′(ϵ)perf) is good, cf. Definition 2.4.1.

Proof. Recall that X ′∗(ϵ) is the generic fiber of the formal scheme X′∗. In the light of Lemma 2.4.5, it sufficies
to prove the similar result after restricting to every affine open of X′∗, and this is given by Lemma 2.4.6. Note
that X∗ ⊗Z(p)

Fp admits a resolution of singularities given by the toroidal compactification, cf. [FC13]. □

Lemma 4.3.10. The triple (X ′∗
Γ1(pm)(ϵ)

perf ,Z ′∗
Γ1(pm)(ϵ)

perf ,X ′
Γ1(pm)(ϵ)

perf) is good.

Proof. Combine Lemma 4.3.9 and Lemma 2.4.4. □
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4.3.4. Back to the tower. Now fix m ≥ 1, and consider Y∗
m = X ∗

Γ1(pm)(ϵ)a → X ∗
Γ0(pm)(ϵ)a.

In the following, we denote Y∗
m = X ∗

Γ1(pm)(ϵ)a.

Lemma 4.3.11. The tilt of Y∞ identifies with X ′
Γ1(pm)(ϵ)

perf .

Proof. Recall that the map X ∗
Γ1(pm)(ϵ)a → X ∗

Γ0(pm)(ϵ)a is finite étale, and thus the base-change Ym →
XΓs(pm)(ϵ)a is also finite étale. Hence the map Y∞ → XΓs(p∞)(ϵ)a is finite étale as it is a pullback of Ym.
Recall from the moduli interpretations that the map Y∞ → XΓs(p∞)(ϵ)a parametrizes all isomorphisms
DmΓs(p∞) ≃ (Z/pmZ)g ((todo: ref)). Apply Lemma 4.3.7, we see that the tilt of Y∞ parametrizes all

isomorphism D′perf
m ≃ (Z/pmZ)g. Therefore the tilt of Ym identifies with X ′

Γ1(pm)(ϵ)
perf , cf. Lemma 4.2.9. □

Remark 4.3.12. Note that Y∗
m\∂ → X ∗

Γs(pm)(ϵ)a\∂ is finite étale. By pullback we get a perfectoid space

Y∗
∞\∂ → X ∗

Γs(p∞)(ϵ)a\∂. We warn the reader that Y∗
∞ is not defined yet.

Lemma 4.3.13. The tilt of Y∗
∞\∂ identifies with X ′∗

Γ1(pm)(ϵ)
perf\∂.

Proof. Let X ′∗
Γ1(pm)(ϵ)

perf = Spa(T, T+), cf. Lemma 4.3.10. Let (U,U+) be the untilt of (T, T+). Using

Lemma 4.3.11 and taking global sections, we obtain a map

U+ → H0(Y∞,O+
Y∞

) = S+
∞.

Recall that S+
∞ is the p-adic completion of colimm′ S+

m′ , cf. Lemma 4.3.3. Thus we have a map of adic
spaces Y∗

m\∂ → Spa(S∞, S+
∞). Combining the two maps and Y∗

∞\∂ → Y∗
m\∂, we get Y∗

∞\∂ → Spa(U,U+).
The two spaces are finite étale over X ∗

Γs(p∞)(ϵ)a away from boundary, cf. Lemma 4.2.9, Definition 4.3.8,

and Remark 4.3.12. Finally, we can apply Lemma B.0.3 with Lemma 4.3.9 and Lemma 4.3.11, i.e. to the
following diagram

Y♭
∞ X ′

Γ1(pm)(ϵ)
perf

(Y∗
∞\∂)♭ X ′∗

Γ1(pm)(ϵ)
perf\∂

(X ∗
Γs(p∞)(ϵ)a\∂)

♭ ≃ X ′∗(ϵ)perf\∂.

∼

Therefore the tilt of Y∗
∞\∂ identifies with X ′∗

Γ1(pm)(ϵ)
perf\∂. □

Lemma 4.3.14. The ring S∞ = H0(Y∞,OY∞) is perfectoid, and the tilt of Y∗
∞ = Spa(S∞, S+

∞) identifies
with X ′∗

Γ1(pm)(ϵ)
perf .

Proof. Let X ′∗
Γ1(pm)(ϵ)

perf = Spa(T, T+), cf. Lemma 4.3.10. Let (U,U+) be the untilt of (T, T+). Using

Lemma 4.3.11 and taking global sections, we obtain a map

U+ → H0(Y∞,O+
Y∞

) = S+
∞.

It sufficies to show that this map is an isomorphism. It’s clear that we have an injection S+
∞/p →

H0(Y∞,O+
Y∞

/p). Hence the map

(U+/p)a = H0(X ′∗
Γ1(pm)(ϵ)

perf ,O+/t)a → H0(X ′
Γ1(pm)(ϵ)

perf ,O+/t)a) = H0(Y∞,O+/p)a = (S+
∞/p)a

is injective, cf. Lemma 4.3.10. So U+ → S+
∞ is injective.

Now we prove the surjectivity. We have a map

(S+
∞/p)a → H0(Y∗

∞\∂,O+/p)a ≃ H0(X ′∗
Γ1(pm)(ϵ)

perf\∂,O+/t)a ≃ H0(X ′∗
Γ1(pm)(ϵ)

perf ,O+/t)a = (U+/p)a,

where the first isomorphism is provided by Lemma 4.3.13, and the second isomorphism is provided by
Lemma 4.3.10. Hence the proof is complete. □
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Lemma 4.3.15. For any m ≥ 1, there is a unique perfectoid spacae X ∗
Γ1(pm)∩Γs(p∞)(ϵ)a over Qcycl

p such that

X ∗
Γ1(pm)∩Γs(p∞)(ϵ)a ∼ limm′ X ∗

Γ1(pm)∩Γs(pm′ )
(ϵ)a.

Moreover, X ∗
Γ1(pm)∩Γs(p∞)(ϵ)a and all X ∗

Γ1(pm)∩Γs(pm′ )
(ϵ)a for m′ sufficiently large are affinoid, and

colimm′ H0(X ∗
Γ1(pm)∩Γs(pm′ )

(ϵ)a,O) → H0(X ∗
Γ1(pm)∩Γs(p∞)(ϵ)a,O)

has dense image. Let Z∗
Γ1(pm)∩Γs(p∞)(ϵ)a ⊂ X ∗

Γ1(pm)∩Γs(p∞)(ϵ)a denote the boundar, and XΓ1(pm)∩Γs(p∞)(ϵ)a
the preimage of XΓs(p)(ϵ)a ⊂ XΓs(p)(ϵ)a. Then the triple

(X ∗
Γ1(pm)∩Γs(p∞)(ϵ)a,ZΓ1(pm)∩Γs(p∞)(ϵ)a,XΓ1(pm)∩Γs(p∞)(ϵ)a)

is good.

Proof. This follows directly from Lemma 4.3.3 and Lemma 4.3.14. □

Lemma 4.3.16. There is a unique perfectoid space X ∗
Γ1(p∞)(ϵ)a over Qcycl

p such that

X ∗
Γ1(p∞)(ϵ)a ∼ limm X ∗

Γ1(pm)(ϵ)a.

Moreover, X ∗
Γ1(p∞)(ϵ)a and all X ∗

Γ1(pm)(ϵ)a for m sufficiently large are affinoid, and

colimm H0(X ∗
Γ1(pm)(ϵ)a,O) → H0(X ∗

Γ1(p∞)(ϵ)a,O)

has dense image. Let Z∗
Γ1(p∞)(ϵ)a ⊂ X ∗

Γ1(p∞)(ϵ)a denote the boundar, and XΓ1(p∞)(ϵ)a the preimage of

XΓs(p)(ϵ)a ⊂ XΓs(p)(ϵ)a. Then the triple

(X ∗
Γ1(p∞)(ϵ)a,ZΓ1(p∞)(ϵ)a,XΓ1(p∞)(ϵ)a)

is good.

Proof. Pass to the limit on m in Lemma 4.3.15 for the first claim. Apply Lemma 4.3.3 for the second result.
Finally use Lemma 2.4.5 for the last assertion. □

4.4. Lifting to level Γ.

Lemma 4.4.1. For every m ≥ 1, the map

X ∗
Γ(pm)(ϵ)a → X ∗

Γ1(pm)(ϵ)a

is finite étale.

Proof. First take ϵ = 0. We claim that we have a decomposition

X ∗
Γ(pm)(0)a ≃

⊔
Γ1(pm)/Γ(pm)

X ∗
Γ1(pm)(0)a.

((todo)) □

Lemma 4.4.2. There is a unique perfectoid space X ∗
Γ(p∞)(ϵ)a over Qcycl

p such that

X ∗
Γ(pm)(ϵ)a ∼ limm X ∗

Γ(pm)(ϵ)a.

Moreover, X ∗
Γ(p∞)(ϵ)a and all X ∗

Γ(pm)(ϵ)a for m sufficiently large are affinoid. The triple

(X ∗
Γ(p∞)(ϵ)a,ZΓ(p∞)(ϵ)a,XΓ(p∞)(ϵ)a)

is good.

Proof. This follows from Lemma 4.4.1, Lemma 4.3.16, and almost purity. □
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5. The Hodge–Tate period map

5.1. The map of topological spaces.

Definition 5.1.1. The topological space |X ∗
Γ(p∞)| (resp. |XΓ(p∞)|, |ZΓ(p∞)|) is defined as the limit limm|X ∗

Γ(pm)|
(resp. limm|XΓ(pm)|, limm|ZΓ(pm)|).

Definition 5.1.2. Let K be a complete non-Archimedean field extension of Qcycl
p . Let K+ ⊂ K be an open

and bounded valuation subring. We define

X ∗
Γ(p∞)(K,K+) = limm X ∗

Γ(pm)(K,K+).

Construction 5.1.3. We now construct the map

|πHT| : |X ∗
Γ(p∞)|\|Z

∗
Γ(p∞)| → |Fℓ|.

Let x ∈ |X ∗
Γ(p∞)|\|Z

∗
Γ(p∞)| be a point. Denote its image by xm ∈ |X ∗

Γ(pm)|\|Z
∗
Γ(pm)| for m ≥ 1. The point

xm induces a map ϕm : Spa(Lm, L+
m) → X ∗

Γ(pm)\ZΓ(pm) = Xad
Γ(pm),Qcycl

p
, cf. Lemma B.0.4. Note that Lm

is the completion of the residue field of xm, and (Lm, L+
m) is a non-discrete affinoid field. The extension

Lm+1/Lm is finite, and thus there exists a unique minimal non-discrete affinoid field (L,L+) containing
all of (Lm, L+

m). Hence we get a map ϕm : Spa(L,L+) → Xad
Γ(pm),Qcycl

p
that factors through Spa(Lm, L+

m).

Restricting to the unique generic point Spa(L,OL), we get a map of schemes Spec(L) → XΓ(pm),Qcycl
p

. The

moduli interpretation gives a principally polarized Abelian variety A over L of dimension g, with level

structure ηp : A[pm](L) → (Z/pmZ)2g. We then get a map ηp : Tp(AL) → Z2g
p by varying m. Let C = L̂ be

the completion. Then we have the Hodge–Tate filtration

0 → Lie(AC) → Tp(AC)⊗Zp C ≃ C2g.

In other words, we obtain a g-dimensional subspace of C2g, which then gives an L-point of Fl, and finally
we obtains an Spa(L,OL)-point of Fℓ. Since Fl is proper, it extends to a map Spa(L,L+) → Fℓ.

Lemma 5.1.4. There is a G(Qp)-equivariant continuous map

|πHT| : |X ∗
Γ(p∞)|\|ZΓ(p∞)| → |Fℓ|,

defined by sending a point x ∈ (X ∗
Γ(p∞)\ZΓ(p∞))(K,K+) correpsonding to a principally polarized Ablian

variety A/K and a symplectic isomorphism α : TpA → Z2g
p , to the Hodge–Tate filtration Lie(A) ⊂ K2g.

Proof. We show the continuity. Let S = X ∗\Z = Xad
Qcycl

p
be an adic space. Let g : AS → S be the universal

Abelian variety. By [Sch13a, Theorem 1.3], we have almost ismorphisms

(R1g∗Z/pnZ)⊗Z/pnZ O+
S /p

n → R1g∗O+
AS

/pn

for all n ≥ 1. Passing to the limit over n ≥ 1, we obtain an isomorphism

R1g∗Ẑp ⊗Ẑp
ÔS → R1g∗ÔAS

of sheaves on the pro-étale site Sproét. Hence we get a map

(R1g∗OAS
)⊗OS

ÔS → R1g∗ÔAS
.

The adic space S can be covered by affinoid open subsets {Ui}, such that each Ui is the bottom level of an

affinoid perfectoid object (Ui,j)j∈J in Sproét such that all transition maps are finite étale surjective. Let Ûi,m

be the base change of Ûi from S to X ∗
Γ(pm)\ZΓ(pm). By almost purity, Ûi,m is affinoid perfectoid, as Ûi is

affinoid perfectoid. Hence we have an affinoid perfectoid space

Ûi,∞ ∼ limm Ûi,m,

which is also the affinoid perfectoid space associated to the following affinoid perfectoid object in Sproét

V = (Ui,j ×S X ∗
Γ(pm)\ZΓ(pm))j∈J,m≥1.

Evaluating the map

(R1g∗OAS
)⊗OS

ÔS → R1g∗Ẑp ⊗Ẑp
ÔS
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at V gives a map
Lie(AS)⊗OS

OV → O2g
V

which is injective, and the image is totally isotropic. Hence we obtain a map of adic spaces

Ûi,∞ → Fℓ.

We have the following commutative diagram

|Ûi,∞| |Fℓ|

|Ui| ×|S| (|X ∗
Γ(p∞)|\|ZΓ(p∞)|) |X ∗

Γ(p∞)|\|ZΓ(p∞)|.

The map |Ûi,∞| → |Ui| ×|S| (|X ∗
Γ(p∞)|\|ZΓ(p∞)|) on the left is continuous, open, and surjective. Hence

the restriction |Ui| ×|S| (|X ∗
Γ(p∞)|\|ZΓ(p∞)|) ⊂ |X ∗

Γ(p∞)|\|ZΓ(p∞)| → |Fℓ| is continuous. Therefore the map

|πHT| : |X ∗
Γ(p∞)|\|ZΓ(p∞)| → |Fℓ| is continuous. □

Lemma 5.1.5. The preimage of Fℓ(Qp) ⊂ |Fℓ| under |πHT| is given by the closure of

|X ∗
Γ(p∞)(0)|\|ZΓ(p∞)(0)|.

Proof. First, note that |X ∗
Γ(p∞)(0)|\|ZΓ(p∞)(0)| is a retro-compact open subset of the locally spectral topolog-

ical space |X ∗
Γ(p∞)|\|ZΓ(p∞)|. Hence its closure is equal to the set of specializations, cf. [Hoc69, Theorem 1],

and thus the set of points x ∈ |X ∗
Γ(p∞)|\|ZΓ(p∞)| whose maximal generalization x̃ ∈ |X ∗

Γ(p∞)(0)|\|ZΓ(p∞)(0)|.
Also, Fℓ(Qp) is stable under generalization and specialization. Combining these results, it suffices to prove
that for every maximally general point x ∈ |X ∗

Γ(p∞)|\|ZΓ(p∞)|, we have x ∈ |X ∗
Γ(p∞)(0)|\|ZΓ(p∞)(0)| if and

only if |πHT|(x) ∈ Fℓ(Qp).
Let C be an algebraically closed complete non-Archimedean extension of Qp. Let x : Spa(C,OC) →

X ∗
Γ(p∞)\ZΓ(p∞). By the moduli interpretation, it corresponds to a principally polarized Abelian variety A

over C, with the infinite level structure η : Tp(A) → Z2g
p . Let G/OC be the Néron model of A/C. The point

x lies in X ∗
Γ(p∞)(0)\ZΓ(p∞)(0), i.e. the Hasse invariant of A is invertible, if and only if B is ordinary, where

B/OC is the Abelian variety fitting into the exact sequence

0 → T̂ → Ĝ → B̂ → 0,

where T is a split torus over OC , cf. [Sch13b, Proposition 4.15], if and only if B[p∞] ≃ (Qp/Zp)
g × µg

p∞ .

Also, |πHT|(x) ∈ Fℓ(Qp) if and only if Lie(Ĝ)⊗OC
C ⊂ TpĜ⊗Zp

C is a Qp-rational subspace, if and only if
Lie(B)⊗OC

C ⊂ TpB ⊗Zp
C is a Qp-rational subspace.

Now suppose B is ordinary. Then the Hodge–Tate filtration is Qp-rational, as it measures the position of
the canonical subgroup of level m under η. In particular, we have |πHT|(x) ∈ Fℓ(Qp).

Conversely, suppose |πHT|(x) ∈ Fℓ(Qp). By [SW13, Theorem 5.2.1], the p-divisible group B[p∞] corre-
sponds to a pair (T,W ), where T = Tp(B[p∞]) is a free Zp-module of finite rank, and W is a C-subvector
space of T ⊗ C(−1). The subspace W is a Qp-rational totally isotropic subspace as |πHT|(x) ∈ Fℓ(Qp).
Since all such subspaces are contained in one orbit under the action of G(Zp), we conclude that B[p∞] ≃
(Qp/Zp)

2g × µg
p∞ , and thus B is ordinary. □

Lemma 5.1.6. The set Fℓ(Qp) is equal to the intersection of all of its open neighbourhoods in Fℓ.

Proof. This follows directly from the fact that Fℓ(Qp) is stable under generalizations. □

Lemma 5.1.7. The quasi-compact open neighbourhoods of Fℓ(Qp) are cofinal among all open neighbour-
hoods.

Proof. The flag variety FlQp
is projective, and thus Fℓ(Qp) = Fl(Qp) is quasi-compact, as the induced

topology is the same as the p-adic analytic topology. Then we conclude by the fact that the topology of Fℓ
is generated by quasi-compact open subsets. □

Lemma 5.1.8. For any open subset U ⊂ Fℓ containing a Qp-rational point, we have G(Qp) · U = Fℓ.

Proof. Omitted. □
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Lemma 5.1.9. Let 0 < ϵ < 1. There is an open subset U ⊂ Fℓ containing Fℓ(Qp) such that

|πHT|−1(U) ⊂ |X ∗
Γ(p∞)(ϵ)|\|ZΓ(p∞)(ϵ)|.

Proof. By induction on g ≥ 0, it sufficies to prove the similar result for the restriction π = |πHT| : |XΓ(p∞)| →
|Fℓ| to the good reduction locus. We shall show that there exists an open subset U ⊂ Fℓ containing Fℓ(Qp)
such that π−1(U) ⊂ |XΓ(p∞)(ϵ)|, i.e. |Ha| ≥ |p|ϵ on U . Consider the constructible topology |XΓ(p∞)|cons. It is
the coarest topology such that every quasi-compact open subset becomes open and closed. Hence π−1(U) is
closed in the constructible topology for every quasi-compact open neighbourhood of Fℓ(Qp), as the map π is
quasi-compact. The complement |XΓ(p∞)|\|XΓ(p∞)(ϵ)| is closed and thus quasi-compact in the constructible
topology. Also, we have

|XΓ(p∞)(0)| = π−1(Fℓ(Qp)) =
⋂

Fℓ(Qp)⊂U

π−1(U) ⊂ |XΓ(p∞)(ϵ)|,

by combining Lemma 5.1.5 and Lemma 5.1.6. Finally we obtain a desired open U satisfying π−1(U) ⊂
|XΓ(p∞)(ϵ)| by Lemma 5.1.7. □

Lemma 5.1.10. Let 0 < ϵ < 1. There are finitely many γ1, . . . , γk ∈ G(Qp) such that

|X ∗
Γ(p∞)|\|ZΓ(p∞)| =

k⋃
i=1

γi · (|X ∗
Γ(p∞)(ϵ)|\|ZΓ(p∞)(ϵ)|).

Moreover, for such γ1, . . . , γk, we have

|X ∗
Γ(p∞)| =

k⋃
i=1

γi · |X ∗
Γ(p∞)(ϵ)|.

Proof. Let U ⊂ Fℓ be an open subset containing Fℓ(Qp) such that |πHT|−1(U) ⊂ |X ∗
Γ(p∞)(ϵ)|\|ZΓ(p∞)(ϵ)|,

cf. Lemma 5.1.9. Apply Lemma 5.1.8 and the fact that Fℓ is quasi-compact, we obtain finitely many
elements γ1, . . . , γk ∈ G(Qp) such that Fℓ = ∪k

i=1γi · U . Taking the preimage, the first equation is clear, cf.
Lemma 5.1.4.

Let V be the union ∪k
i=1γi · |X ∗

Γ(p∞)(ϵ)|. It remains to show that V = |X ∗
Γ(p∞)|. Note that V is a

quasi-compact open subset of |X ∗
Γ(p∞)|, and contains |X ∗

Γ(p∞)|\|ZΓ(p∞)|. There exists m ≥ 1 such that V

is the preimage of some Vm ⊂ |X ∗
Γ(pm)|, where Vm is a quasi-compact open containing X ∗

Γ(pm)\ZΓ(pm). It

sufficies to show that Vm = X ∗
Γ(pm). Let x ∈ X ∗

Γ(pm)\Vm. Then {x} is equal to the intersection of all open

neighbourhoods of x in X ∗
Γ(pm). The subset Vm is quasi-compact in the constructible topology, and thus

there exists an open neighbourhood U of x that is disjoint with Vm. In particular, we have U ⊂ ZΓ(pm),
which is impossible due to dimension reason. □

Lemma 5.1.11. Let 0 ≤ ϵ < 1/2. There exists finitely many γ1, . . . , γk ∈ G(Zp) such that

|X ∗
Γ(p∞)(ϵ)| =

k⋃
i=1

γi · |X ∗
Γ(p∞)(ϵ)a|.

Proof. Let x ∈ |X ∗
Γ(p∞)(ϵ)|. It corresponds to a principally polarized Abelian variety A with a level structure

η : Tp(A) → Z2g
p . We assume that A has good reduction. The existence of the anti-canonical subgroup

D ⊂ A[p] is equivalent to the condition that the isomorphism A[p] → F2g
p induced by η sends D to a

subgroup disjoint with Fg
p ⊂ F2g

p , which can always be achieved by an element in G(Fp). □

5.2. The map of adic spaces.

Definition 5.2.1. A subset U ⊂ |X ∗
Γ(p∞)| is called affinoid perfectoid if

(1) There exists m ≥ 1 such that U is the preimage of an affinoid open Spa(Rm, R+
m) ⊂ |X ∗

Γ(pm)|.
(2) For every m′ ≥ m, if we write the preimage of Spa(Rm, R+

m) in X ∗
Γ(pm′ )

(which is necessarily affinoid)

as Spa(Rm′ , R+
m′), then (R∞, R+

∞) is an affinoid perfectoid Qcycl
p -algebra, where R+

∞ is the p-adic

completion of colimm′ R+
m′ and R∞ = R+

∞[1/p].
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Definition 5.2.2. A subset U ⊂ |X ∗
Γ(p∞)| is called perfectoid if it is a union of affinoid perfectoid open

subsets.

Lemma 5.2.3. There exists a perfectoid space X ∗
Γ(p∞) over Q

cycl
p such that

X ∗
Γ(p∞) ∼ limm X ∗

Γ(pm).

It is covered by finitely many G(Qp)-translates of X ∗
Γ(p∞)(ϵ)a for any 0 < ϵ < 1/2.

Proof. By Lemma 5.1.10, Lemma 5.1.11, and Lemma 4.4.2, we conclude that |X ∗
Γ(p∞)| is perfectoid. Thus it

carries the structure of a perfectoid space. The remaining two claims are both clear. □

Let ZΓ(p∞) ⊂ X ∗
Γ(p∞) be the boundary.

Lemma 5.2.4. There is a unique map of adic spaces over Qp

πHT : X ∗
Γ(p∞)\ZΓ(p∞) → Fℓ

which realizes |πHT| on topological spaces.

Proof. We repeat the arguments of Construction 5.1.3 and the result is clear. □

Definition 5.2.5. Recall the following inclusions of algebraic varieties over Q

Fl → Gr(2g, g) → P(
2g
g )−1 ≃ P(∧gQ2g).

Let {e1, . . . , e2g} be a basis of Q2g. Denote eJ = ej1 ∧ · · · ∧ ejg for J = {j1 < · · · < jg} ⊂ {1, . . . , 2g}. Then
we have an affinoid open {|xJ | ≥ 1} in P(∧gQ2g)ad for every J . The preimage in Fℓ is denoted by FℓJ ,
which is an affinoid open in Fℓ.

Lemma 5.2.6. Let L ∈ Fℓ(Qp) be a totally isotropic subspace of Z2g
p . Then L ∈ Fℓ{g+1,...,2g} if and only

if L is transverse with Zg
p ⊕ 0g.

Proof. Omitted. □

Lemma 5.2.7. The preimage of Fℓ{g+1,...,2g}(Qp) is given by the closure of X ∗
Γ(p∞)(0)a\ZΓ(p∞)(0)a.

Proof. We first consider the good reduction case. It sufficies to check the rank 1 points. Let x : Spa(C,OC) →
XΓ(p∞). Suppose it corresponds to the Abelian variety A/OC with level structure η : TaA → Z2g

p . We have
that πHT(x) ∈ Fℓ{g+1,...,2g}(Qp) if and only if x ∈ XΓ(p∞)(0)a, cf. Lemma 5.1.5. The result then follows
from Lemma 5.2.6.

Next, we shall show that X ∗
Γ(p∞)(0)a\ZΓ(p∞)(0)a is mapped to F{g+1,...,2g}(Qp). Otherwise, there exists a

clopen subset of Fℓ(Qp) disjoint from Fℓ{g+1,...,2g}(Qp) that intersects with the image of X ∗
Γ(p∞)(0)a\ZΓ(p∞)(0)a.

Taking its preimage gives a clopen subset of X ∗
Γ(p∞)(0)a\ZΓ(p∞)(0)a whose image in Fℓ(Qp) is disjoint from

Fℓ{g+1,...,2g}(Qp). Recall that the triple (X ∗
Γ(p∞)(0)a,ZΓ(p∞)(0)a,XΓ(p∞)(0)a) is good, cf. Lemma 4.4.2,

which implies that any clopen subset of X ∗
Γ(p∞)(0)a\ZΓ(p∞)(0)a extends uniquely to a clopen subset of

X ∗
Γ(p∞)(0)a. Hence we obtain a nonempty clopen subset V ⊂ X ∗

Γ(p∞)(0)a such that

πHT(V ∩ XΓ(p∞)(0)a) = πHT(V \ZΓ(p∞)(0)a) ⊂ Fℓ(Qp)\Fℓ{g+1,...,2g}(Qp).

Intersecting with V gives a good triple

(V, V ∩ ZΓ(p∞)(0)a, V ∩ XΓ(p∞)(0)a).

In particular, the intersection V ∩ XΓ(p∞)(0)a is nonempty. This constradicts the case of good reduction.
Finally, it suffices to prove that πHT(x) ∈ Fℓ{g+1,...,2g}(Qp) implies that x ∈ X ∗

Γ(p∞)(0)a\ZΓ(p∞)(0)a for

every rank 1 point x : Spa(C,OC) → X ∗
Γ(p∞)\ZΓ(p∞). Choose γ ∈ G(Zp) such that γ · x ∈ X ∗

Γ(p∞)(0)a, cf.

Lemma 5.1.11, and assume that x /∈ X ∗
Γ(p∞)(0)a\ZΓ(p∞)(0)a. Then

γ · x ∈ X ∗
Γ(p∞)(0)a\γ · X ∗

Γ(p∞)(0)a.

Repeat the argument in the previous paragraph, we obtain an element y ∈ XΓ(p∞)(0)a\γ · XΓ(p∞)(0)a
such that πHT(y) ∈ γ · Fℓ{g+1,...,2g}(Qp). Note that γ−1 · y ∈ XΓ(p∞)(0)\XΓ(p∞)(0)a, and πHT(γ

−1 · y) ∈
Fℓ{g+1,...,2g}(Qp). This constradicts the good reduction case. □
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Lemma 5.2.8. For every open subset U ⊂ Fℓ containing Fℓ(Qp), there is some ϵ > 0 such that

X ∗
Γ(p∞)(ϵ)\ZΓ(p∞)(ϵ) ⊂ π−1

HT(U).

Proof. Repeat the argument in Lemma 5.1.7. □

Lemma 5.2.9. There exists some 0 < ϵ < 1/2 such that

X ∗
Γ(p∞)(ϵ)a\ZΓ(p∞)(ϵ)a ⊂ π−1

HT(Fℓ{g+1,...,2g}).

Proof. Choose an open neighbourhood U of Fℓ(Qp) in Fℓ such that U ∩ Fℓ{g+1,...,2g}(Qp) is clopen in U .
Let U ′ = U\Fℓ{g+1,...,2g}(Qp). We can choose ϵ such that πHT(X ∗

Γ(p∞)(ϵ)a\ZΓ(p∞)(ϵ)a) ⊂ U . The preimage

of U ′ gives a unique clopen subset Vϵ ⊂ X ∗
Γ(p∞)(ϵ)a, as the triple

(X ∗
Γ(p∞)(ϵ)a,ZΓ(p∞)(ϵ)a,XΓ(p∞)(ϵ)a)

is good. The intersection of all Vϵ for ϵ sufficiently smalle is empty, cf. Lemma 5.2.7. Since every Vϵ is quasi-
compact under the constructible topology, we have Vϵ = ∅ for some ϵ > 0, and the proof is complete. □

Lemma 5.2.10. There exists a unique map of adic spaces

πHT : X ∗
Γ(p∞) → Fℓ

extending πHT on X ∗
Γ(p∞)\ZΓ(p∞).

Proof. We first show the existence. As πHT is G(Qp)-equivariant, it sufficies to show that πHT admits an
extension from X ∗

Γ(p∞)(ϵ)a\ZΓ(p∞)(ϵ)a to X ∗
Γ(p∞)(ϵ)a for some ϵ > 0, cf. Lemma 5.1.10 and Lemma 5.1.11.

It can be assumed that πHT(X ∗
Γ(p∞)(ϵ)a\ZΓ(p∞)(ϵ)a) ⊂ Fℓ{g+1,...,2g} by Lemma 5.2.9. Every bounded

function on Fℓ{g+1,...,2g} pulls back to a bounded function on X ∗
Γ(p∞)(ϵ)a\ZΓ(p∞)(ϵ)a, which by Riemann’s

Hebbarkeitssatz extends uniquely to a bounded function on X ∗
Γ(p∞)(ϵ)a. Hence the extenstion exists.

For the uniqueness, it can be checked locally. Let U be an affinoid perfectoid of X ∗
Γ(p∞). Let f, g be two

functions on U that are equal on U\ZΓ(p∞). The subset {|f − g| ≥ |p|n} is an open subset of U contained in
the boundary, and thus must be empty. Hence |f−g| < |p|n for all n. Therefore f = g, and we are done. □

Appendix A. Review of deformation theory

Definition A.0.1 ([Ill71, II.1.2.1, II.1.2.3]). Let A → B be a map of rings. The simplicial A-algebra PA(B)
is defined by PA(B)0 = A[B] and PA(B)n = A[PA(B)n−1] for n ≥ 1. The standard resolution of B over
A is the argumentation PA(B) → B where B is viewed as a constant simplicial A-algebra. The cotangent
complex of B over A is the simplicial B-module LB/A = Ω1

PA(B)/A ⊗PA(B) B.

Remark A.0.2. This definition works in a general topos.

Definition A.0.3 ([Ill72, VII.1.1.1]). Let S be a scheme. Let Szar be the small Zariski site over S. Let Sfpqc

be the big fqpc site over S. The natural inclusion Szar → Sfpqc induces a geometric map (ϵ∗, ϵ∗) : Sh(Szar) ⇄
Sh(Sfpqc).

Definition A.0.4. Let f : X → Y be a map of schemes. The cotangent complex is LX/Y .

Definition A.0.5. Let S be a scheme. Let G be a group scheme over S that is flat and locally of finite
presentation. Let e : S → G be the unit. The co-Lie complex is ℓG = Le∗LG/S , and the Lie complex is
ℓ∨G = RHom(ℓG,OS). Define ℓG = Lϵ∗ℓG.

Remark A.0.6. A group scheme G flat over S is always a local complete intersection over S. Then the
cotangent complex LG/S has perfect amplitude in [−1, 0], and thus ℓG has perfect amplitude in [−1, 0], ℓ∨G
has perfect amplitude in [0, 1].

If G is smooth over S, then LG/S = ΩG/S is locally free, and ℓ∨G coincides with the Lie algebra Lie(G) of
G.

In particular, if 0 → H → A → B → 0 is a short exact sequence of commutative group schemes over S,
withH finite locally free, and A,B smooth, then ℓ∨H is represented be the two-term complex Lie(A) → Lie(B).
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Lemma A.0.7 ([Ill72, Theorem VII.4.2.5]). Let f : S → T be a map of schemes. Let i : S → S′ be a
T -extension by a quasi-coherent module I. Let A be a “schéma en anneaux” over T that is, as a scheme
over T , tor-independent (c.f. [FJJ+71, Definition III.1.5]) with both S and S′. Let F (resp. G′) be “schéma
en A-modules” that are flat and locally of finite presentation over S (resp. S′). Let G be a “schéma en
A-module” over S induced by G′. Let u : F → G be a morphism of “schémas en A-modules”. Let K be the
complex fitting into the distinguished triangle K → ℓ∨F → ℓ∨G → K[1]. It is an object in D(A⊗L

Z O). Then

there is an obstruction ω(u,G′) ∈ Ext2A(F,K ⊗L
O ϵ∗I) which is zero if and only if there exists a pair (F ′, u′)

where F ′ is a deformation of F as “un schéma en A-modules” flat over S′ and a map u′ : F ′ → G′ extending
u.

Lemma A.0.8. Let S be a scheme. Let i : S → S′ be an extension by a quasi-coherent module I. Suppose
S and S′ are both tor-indepeendent with Spec(Z). Let F (resp. G′) be commutative group schemes over
S (resp. S′) that are flat and locally of finite presentation. Let G be a commutative group scheme over S
induced by G′. Let u : F → G be a morphism of group schemes over S. Let K be the cone of the map
ℓ∨F → ℓ∨G. There is an obstruction ω(u,G′) ∈ Ext1(F,K⊗L I) which vanishes if and only if there exists a pair
(F ′, u′) where F ′ is a deformation of F as a commutative group scheme that is flat over S′, and u′ : F ′ → G′

is a map extending u.

Lemma A.0.9 ([Sch15, Theorem III.2.1]). Let A be a ring. Let G and H be commutative group schemes
over A that are flat and of finite presentation, with a group map u : H → G. Let B → A be a square-

zero thickening with the argumentation ideal J . Let G̃ be a lift of G to B. Let K be a cone of the map
ℓ∨H → ℓ∨G of Lie complexes. Then there is an obstruction class ω ∈ Ext1(H,K ⊗L J) which vanishes if and

only if there exists a pair (H̃, ũ) where H̃ is a flat commutative group scheme over B, and ũ : H̃ → G̃
is a map lifting u : H → G. Moreover, the obstruction class is functorial in J , in the following sense. If
B′ → A is another square-zero thickening with the argumentation ideal J ′, with a map B → B′ over A, then
ω′ ∈ Ext1(H,K ⊗L J ′) is the image of ω ∈ Ext1(H,K ⊗L J) under the map J → J ′.

Appendix B. Review of perfectoid spaces

Definition B.0.1. Let Y be a flat t-adic formal scheme over Fp[[t
1/(p−1)p∞

]]. Let Φ : Y → Y be the ralative
Frobenius. Then the inverse limit limΦ Y is representable by a perfect flat t-adic formal scheme Yperf over
Fp[[t

1/(p−1)p∞
]], called the perfection of Y.

Locally,

(Spf(S))perf = Spf(Sperf)

where Sperf is the t-adic completion of limΦ S.

Definition B.0.2. Let Y be an adic space over Fp((t
1/(p−1)p∞

)). Let Φ : Y → Y be the ralative Frobenius.

Then there exists a unique perfectoid space Yperf over Fp((t
1/(p−1)p∞

)), called the perfection of Y, such that

Yperf ∼ limΦ Y.

Locally,

Spa(S, S+)perf = Spa(Sperf , Sperf,+)

where Sperf,+ is the t-adic completion of limΦ S+, and Sperf = Sperf,+[1/t].

Lemma B.0.3. Let K be a perfectoid field. Let X ,Y1,Y2 be perfectoid spaces over K, with finite étale
maps Y1 → X and Y2 → X . Let f : Y1 → Y2 be a map over X . Let U ⊂ X be an open subset such that the
restriction map H0(X ,OX ) → H0(U ,OU ) is injective. If f |U is an isomorphism, then f is an isomorphism.

Proof. The points of X where the map of stalks induced by f is an isomorphism is open and closed. If f is
not an isomorphism, then there exists a non-trivial idempotent e ∈ H0(X ,OX ) such that e|U = 1. However
this contradicts the condition that the map H0(X ,OX ) → H0(U ,OU ) is injective. □

Lemma B.0.4. Let (R,R+) be a Tate Huber pair. There is a bijection of sets between |Spa(R,R+)| and
the set {(L,L+, ϕ)}/ ∼, where (L,L+) is a non-discrete affinoid field and ϕ : (R,R+) → (L,L+) is a map of
Huber pairs such that ϕ(R) ⊂ L is dense.
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