Statistical Learning

Tianjiao Nie

September 16, 2025

Contents

1	Introduction	1
2	Probably Approximately Correct Learning	1
3	The Vapnik-Chervonenkis Dimension	2

1 Introduction

Lemma 1.1 (No free lunch). For every learner A and training set size m, there exists (\mathcal{D}, f) such that

$$\Pr_{S \sim \mathcal{D}^m} [L_{\mathcal{D}, f}(h_S) \ge 1/8] \ge 1/7.$$

Remark 1.2. This is a no-go result for learning that is extremely general in the sense that there is no prior knowledge on the target to learn.

2 Probably Approximately Correct Learning

Definition 2.1. We say that $(\mathcal{D}, f, \mathcal{H})$ is realizable if there exists $h \in \mathcal{H}$ such that $L_{\mathcal{D}, f}(h) = 0$.

Definition 2.2. A hypothesis class \mathcal{H} is called PAC learnable (in the realizable setting) if there exists a function $m_{\mathcal{H}}: (0,1) \times (0,1) \to \mathbb{N}$ and a learning algorithm $S \mapsto h_S \in \mathcal{H}$ with the following property. For every $\epsilon, \delta \in (0,1)$, every distribution \mathcal{D} on \mathcal{X} , and every labeling function $f: \mathcal{X} \to \mathcal{Y}$, if the realizability condition holds for $(\mathcal{D}, f, \mathcal{H})$, then running the learning algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ many i.i.d. samples from \mathcal{D} labelled by f gives a hypothesis $h \in \mathcal{H}$ such that with probability at least $1 - \delta$ over the choice of the m samples, we have $L_{\mathcal{D},f}(h) \leq \epsilon$. The function $m_{\mathcal{H}}$ is called the sample complexity of learning \mathcal{H} . In other words, we need estimations of the form

$$\Pr_{S \sim \mathcal{D}^m} [L_{\mathcal{D}, f}(h_S) \le \epsilon] \ge 1 - \delta.$$

Now we define our first learning algorithm.

Definition 2.3. Let \mathcal{H} be a finite hypothesis class. Let $S = ((x_i, y_i))_{1 \leq i \leq m}$ be a given training set. The *empirical loss* of $h \in \mathcal{H}$ is defined as

$$L_S(h) = \frac{1}{m} |\{i \mid h(x_i) \neq y_i\}|.$$

The empirical risk minimization (ERM) learner outputs an $ERM_{\mathcal{H}}(S) \in \mathcal{H}$ that minimizes the empirical loss.

Lemma 2.4. Let \mathcal{H} be a finite hypothesis class. Let $\epsilon, \delta \in (0,1)$. If $m \ge \ln(|\mathcal{H}|/\delta)/\epsilon$, then for every (\mathcal{D}, f) such that $(\mathcal{D}, f, \mathcal{H})$ is realizable, we have

$$\Pr_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}, f}(ERM_{\mathcal{H}}(S)) \le \epsilon \right] \ge 1 - \delta.$$

In particular, the finite hypothesis class \mathcal{H} is PAC learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \le \left\lceil \frac{\ln(|\mathcal{H}|/\delta)}{\epsilon} \right\rceil.$$

Proof. Unwinding the definitions, we need to show that

$$\mathcal{D}^{m}(\{S \mid L_{\mathcal{D},f}(\mathrm{ERM}_{\mathcal{H}}(S)) > \epsilon\}) \leq \delta.$$

Let $\mathcal{H}_B = \{h \in \mathcal{H} \mid L_{D,f}(h) > \epsilon\}$ be the set of "bad" hypothesis. Let $M = \{S \mid \exists h \in \mathcal{H}_B, L_S(h) = 0\}$ be the set of "misleading" samples. From the realizability condition we see that

$${S \mid L_{\mathcal{D},f}(\mathrm{ERM}_{\mathcal{H}}(S)) > \epsilon} \subset M = \bigcup_{h \in \mathcal{H}_B} {S \mid L_S(h) = 0}.$$

Hence

$$\mathcal{D}^{m}(\{S \mid L_{\mathcal{D},f}(\mathrm{ERM}_{\mathcal{H}}(S)) > \epsilon\}) \leq \sum_{h \in \mathcal{H}_{B}} \mathcal{D}^{m}(\{S \mid L_{S}(h) = 0\})$$
$$\leq |\mathcal{H}_{B}| \max_{h \in \mathcal{H}_{B}} \mathcal{D}^{m}(\{S \mid L_{S}(h) = 0\}).$$

Since the elements of S are sampled independently, we have

$$\mathcal{D}^m(\{S \mid L_S(h) = 0\}) = \mathcal{D}(\{x \mid h(x) = f(x)\})^m = (1 - L_{\mathcal{D},f}(h))^m \le (1 - \epsilon)^m \le \exp(-\epsilon m)$$
 for $h \in \mathcal{H}_B$. Therefore $\mathcal{D}^m(\{S \mid L_{\mathcal{D},f}(\mathrm{ERM}_{\mathcal{H}}(S)) > \epsilon\}) \le |\mathcal{H}| \exp(-\epsilon m) \le \delta$.

3 The Vapnik-Chervonenkis Dimension

Definition 3.1. Assume that $\mathcal{Y} = \{0,1\}$. Let \mathcal{H} be a hypothesis class. Let $C = \{x_1,\ldots,x_m\} \subset \mathcal{X}$. Let \mathcal{H}_C be the restriction of \mathcal{H} to C. Note that every restriction $h_C \in \mathcal{H}_C$ can be represented as a vector $(h(x_1),\ldots,h(x_m)) \in \{0,1\}^m$. Hence $|\mathcal{H}_C| \leq 2^m$. We say that C is shattered by \mathcal{H} if $|\mathcal{H}_C| = 2^m$. The Vapnik-Chervonenkis (VC) dimension of \mathcal{H} is defined as

$$VCDim(\mathcal{H}) = \sup\{|C| \mid C \subset \mathcal{X} \text{ shattered by } \mathcal{H}\}.$$

Example 3.2. Let $\mathcal{X} = \mathbb{R}$ and $\mathcal{H} = \{x \mapsto \text{sign}(x - \theta) \mid \theta \in \mathbb{R}\}$. It's clear that $C = \{0\}$ is shattered by \mathcal{H} , and that every set of size 2 is not shattered by \mathcal{H} . Hence $\text{VCDim}(\mathcal{H}) = 1$.

Example 3.3. Let $\mathcal{X} = \mathbb{R}$ and $\mathcal{H} = \{1_{[a,b]} \mid a < b\}$. It's clear that $C = \{0,1\}$ is shattered by \mathcal{H} , and that every set of size 3 is not shattered by \mathcal{H} . Hence $VCDim(\mathcal{H}) = 2$.

Example 3.4. The VC dimension of axis-aligned rectangles in \mathbb{R}^d is 2d.

Example 3.5. Let $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{H} = \{x \mapsto \operatorname{sign}(w^\top x) \mid w \in \mathbb{R}^d\}$. The set $\{e_1, \dots, e_d\}$ is shattered by \mathcal{H} . Let $C = \{x_1, \dots, x_{d+1}\} \subset \mathbb{R}^d$ be a set of size d+1. Then $\alpha_1 x_1 + \dots + \alpha_{d+1} x_{d+1} = 0$ for some $\alpha_1, \dots, \alpha_{d+1}$ not all zero. Let $I = \{i \mid \alpha_i > 0\}$ and $J = \{i \mid \alpha_i < 0\}$. Then

$$\sum_{i \in I} \alpha_i x_i = -\sum_{j \in J} \alpha_j x_j.$$

Assume that C is shattered by \mathcal{H} . Then there exists $h \in \mathcal{H}$ such that $h(x_i) = 1$ if and only if $i \in I$. In other words, there exists $w \in \mathbb{R}^d$ such that $w^\top x_i > 0$ if and only if $i \in I$. This leads to a contradiction

$$0 < \sum_{i \in I} \alpha_i w^\top x_i = \sum_{j \in J} -\alpha_j w^\top x_j < 0.$$

Therefore $VCDim(\mathcal{H}) = d$.

Lemma 3.6. Let \mathcal{H} be a finite hypothesis class.

- 1. $VCDim(\mathcal{H}) \leq \log_2 |\mathcal{H}|$.
- 2. The gap between $VCDim(\mathcal{H})$ and $log_2|\mathcal{H}|$ can be arbitrarily large.

Proof. Here we only give a construction for (2). Let $k \geq 1$. Take $\mathcal{X} = \{1, 2, \dots, k\}$ and

$$\mathcal{H} = \{x \mapsto \operatorname{sign}(x - \theta + 0.5) \mid \theta \in \{1, \dots, k\}\}.$$

We have $VCDim(\mathcal{H}) = 1$ and $log_2|\mathcal{H}| = log_2 k$.

Lemma 3.7. Let \mathcal{H} be a hypothesis class of binary classifiers with VC dimension $d < \infty$. Then \mathcal{H} is PAC learnable with sample complexity bounded by

$$C_1 \frac{d + \ln(1/\delta)}{\epsilon} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d \ln(1/\epsilon) + \ln(1/\delta)}{\epsilon}$$

where $C_1, C_2 > 0$ are absolute constants. Moreover, this sample complexity can be achieved by the ERM learning algorithm.