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1 Introduction
Lemma 1.1 (No free lunch). For every learner A and training set size m, there exists (D, f) such that
PrSND'm [L’va(hs) Z 1/8] Z 1/7.

Remark 1.2. This is a no-go result for learning that is extremely general in the sense that there is no prior
knowledge on the target to learn.

2 Probably Approximately Correct Learning

Definition 2.1. We say that (D, f, H) is realizable if there exists h € H such that Lp ;(h) = 0.

Definition 2.2. A hypothesis class H is called PAC learnable (in the realizable setting) if there exists a
function my; : (0,1) x (0,1) — N and a learning algorithm S — hg € H with the following property. For
every ¢,0 € (0,1), every distribution D on X, and every labeling function f : X — ), if the realizability
condition holds for (D, f,H), then running the learning algorithm on m > my (€, §) many i.i.d. samples from
D labelled by f gives a hypothesis h € H such that with probability at least 1 — & over the choice of the
m samples, we have Lp ;(h) < e. The function my, is called the sample complezity of learning H. In other
words, we need estimations of the form

PI"SNDm [ij(hg) S 6] Z 1-0.
Now we define our first learning algorithm.

Definition 2.3. Let H be a finite hypothesis class. Let S = ((x“yl))
empirical loss of h € H is defined as

I<i<m be a given training set. The

Ls(h) = —[{i] i) # i}

The empirical risk minimization (ERM) learner outputs an ERMy(S) € H that minimizes the empirical
loss.



Lemma 2.4. Let H be a finite hypothesis class. Let €,6 € (0,1). If m > In(|#|/d) /e, then for every (D, f)
such that (D, f, H) is realizable, we have

Prgpm [Lp (ERMy(S)) < €] >1-34.

In particular, the finite hypothesis class H is PAC learnable with sample complexity

ma (e, 8) < FD(WWW

€
Proof. Unwinding the definitions, we need to show that
D" ({S | Lp,f(ERMx(S)) > €}) < 6.
Let Hp ={h € H | Lp ;(h) > €} be the set of “bad” hypothesis. Let M = {S | 3h € Hp, Ls(h) = 0} be the
set of “misleading” samples. From the realizability condition we see that
{S| Lp s(ERMy(S)) > ey c M= | J {S|Ls(h) =0}
heHp
Hence
D™({S | Lp,s(ERMy(S)) > e}) < D> D™({S| Ls(h) = 0})
heHp
< [Hp| max D™({S | Ls(h) = 0}).

Since the elements of S are sampled independently, we have
D™({S | Ls(h) =0}) =D({x | h(z) = f(2)})™ = (1 — Lps(h))"™ < (1 — €)™ < exp(—em)
for h € Hp. Therefore D" ({S | Lp, y(ERMy(S)) > €}) < |H|exp(—em) < é. O

3 The Vapnik—Chervonenkis Dimension

Definition 3.1. Assume that ) = {0,1}. Let A be a hypothesis class. Let C' = {z1,...,2m} C X. Let
Hce be the restriction of H to C. Note that every restriction he € He can be represented as a vector
(h(z1),...,h(zm)) € {0,1}™. Hence |H¢c| < 2™. We say that C is shattered by H if |[Ho| = 2™. The
Vapnik—Chervonenkis (VC) dimension of H is defined as

VCDim(H) = sup{|C| | C C X shattered by H}.

Example 3.2. Let X =R and H = {z > sign(z — 0) | § € R}. It’s clear that C = {0} is shattered by H,
and that every set of size 2 is not shattered by 7. Hence VCDim(H) = 1.

Example 3.3. Let X = R and H = {1} | @ < b}. It’s clear that C' = {0,1} is shattered by #, and that
every set of size 3 is not shattered by 7. Hence VCDim(H) = 2.

Example 3.4. The VC dimension of axis-aligned rectangles in R is 2d.

Example 3.5. Let X = R? and H = {z — sign(w ) | w € R?}. The set {ei,...,eq} is shattered by H.
Let C ={x1,...,2441} C R? be a set of size d + 1. Then ayx; + -+ + agy12q41 = 0 for some ay, ..., ogq1
not all zero. Let I = {i | o; > 0} and J = {i | a; < 0}. Then

Z ;T = — Z Q;Tj.

iel jes
Assume that C is shattered by #. Then there exists h € H such that h(z;) = 1 if and only if s € I. In other
words, there exists w € R? such that w'z; > 0 if and only if i € I. This leads to a contradiction

0< Zainxi = Z —aijxj < 0.
el JjeJ
Therefore VCDim(H) = d.



Lemma 3.6. Let H be a finite hypothesis class.
1. VCDim(H) < log,|H|.
2. The gap between VCDim(#) and log,|H| can be arbitrarily large.

Proof. Here we only give a construction for (2). Let k > 1. Take X = {1,2,...,k} and
H={x—sign(z—0+0.5)|0ec{l,...,k}}.
We have VCDim(H) = 1 and log,|H| = log, k. O

Lemma 3.7. Let H be a hypothesis class of binary classifiers with VC dimension d < oo. Then H is PAC
learnable with sample complexity bounded by

oL/ o, din0/e) +n(1/d)

€ €

where Cp,Cy > 0 are absolute constants. Moreover, this sample complexity can be achieved by the ERM
learning algorithm.
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