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1 Introduction

Lemma 1.1 (No free lunch). For every learner A and training set size m, there exists (D, f) such that

PrS∼Dm [LD,f (hS) ≥ 1/8] ≥ 1/7.

Remark 1.2. This is a no-go result for learning that is extremely general in the sense that there is no prior
knowledge on the target to learn.

2 Probably Approximately Correct Learning

De�nition 2.1. We say that (D, f,H) is realizable if there exists h ∈ H such that LD,f (h) = 0.

De�nition 2.2. A hypothesis class H is called PAC learnable (in the realizable setting) if there exists a
function mH : (0, 1) × (0, 1) → N and a learning algorithm S 7→ hS ∈ H with the following property. For
every ϵ, δ ∈ (0, 1), every distribution D on X , and every labeling function f : X → Y, if the realizability
condition holds for (D, f,H), then running the learning algorithm on m ≥ mH(ϵ, δ) many i.i.d. samples from
D labelled by f gives a hypothesis h ∈ H such that with probability at least 1 − δ over the choice of the
m samples, we have LD,f (h) ≤ ϵ. The function mH is called the sample complexity of learning H. In other
words, we need estimations of the form

PrS∼Dm [LD,f (hS) ≤ ϵ] ≥ 1− δ.

Now we de�ne our �rst learning algorithm.

De�nition 2.3. Let H be a �nite hypothesis class. Let S =
(
(xi, yi)

)
1≤i≤m

be a given training set. The

empirical loss of h ∈ H is de�ned as

LS(h) =
1

m

∣∣{i | h(xi) ̸= yi}
∣∣.

The empirical risk minimization (ERM) learner outputs an ERMH(S) ∈ H that minimizes the empirical
loss.
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Lemma 2.4. Let H be a �nite hypothesis class. Let ϵ, δ ∈ (0, 1). If m ≥ ln
(
|H|/δ

)
/ϵ, then for every (D, f)

such that (D, f,H) is realizable, we have

PrS∼Dm

[
LD,f (ERMH(S)) ≤ ϵ

]
≥ 1− δ.

In particular, the �nite hypothesis class H is PAC learnable with sample complexity

mH(ϵ, δ) ≤
⌈
ln(|H|/δ)

ϵ

⌉
.

Proof. Unwinding the de�nitions, we need to show that

Dm({S | LD,f (ERMH(S)) > ϵ}) ≤ δ.

Let HB = {h ∈ H | LD,f (h) > ϵ} be the set of �bad� hypothesis. Let M = {S | ∃h ∈ HB , LS(h) = 0} be the
set of �misleading� samples. From the realizability condition we see that

{S | LD,f (ERMH(S)) > ϵ} ⊂ M =
⋃

h∈HB

{S | LS(h) = 0}.

Hence

Dm({S | LD,f (ERMH(S)) > ϵ}) ≤
∑

h∈HB

Dm({S | LS(h) = 0})

≤ |HB | max
h∈HB

Dm({S | LS(h) = 0}).

Since the elements of S are sampled independently, we have

Dm({S | LS(h) = 0}) = D({x | h(x) = f(x)})m = (1− LD,f (h))
m ≤ (1− ϵ)m ≤ exp(−ϵm)

for h ∈ HB . Therefore Dm({S | LD,f (ERMH(S)) > ϵ}) ≤ |H| exp(−ϵm) ≤ δ.

3 The Vapnik�Chervonenkis Dimension

De�nition 3.1. Assume that Y = {0, 1}. Let H be a hypothesis class. Let C = {x1, . . . , xm} ⊂ X . Let
HC be the restriction of H to C. Note that every restriction hC ∈ HC can be represented as a vector
(h(x1), . . . , h(xm)) ∈ {0, 1}m. Hence |HC | ≤ 2m. We say that C is shattered by H if |HC | = 2m. The
Vapnik�Chervonenkis (VC) dimension of H is de�ned as

VCDim(H) = sup{|C| | C ⊂ X shattered by H}.

Example 3.2. Let X = R and H = {x 7→ sign(x − θ) | θ ∈ R}. It's clear that C = {0} is shattered by H,
and that every set of size 2 is not shattered by H. Hence VCDim(H) = 1.

Example 3.3. Let X = R and H = {1[a,b] | a < b}. It's clear that C = {0, 1} is shattered by H, and that
every set of size 3 is not shattered by H. Hence VCDim(H) = 2.

Example 3.4. The VC dimension of axis-aligned rectangles in Rd is 2d.

Example 3.5. Let X = Rd and H = {x 7→ sign(w⊤x) | w ∈ Rd}. The set {e1, . . . , ed} is shattered by H.
Let C = {x1, . . . , xd+1} ⊂ Rd be a set of size d+ 1. Then α1x1 + · · ·+ αd+1xd+1 = 0 for some α1, . . . , αd+1

not all zero. Let I = {i | αi > 0} and J = {i | αi < 0}. Then∑
i∈I

αixi = −
∑
j∈J

αjxj .

Assume that C is shattered by H. Then there exists h ∈ H such that h(xi) = 1 if and only if i ∈ I. In other
words, there exists w ∈ Rd such that w⊤xi > 0 if and only if i ∈ I. This leads to a contradiction

0 <
∑
i∈I

αiw
⊤xi =

∑
j∈J

−αjw
⊤xj < 0.

Therefore VCDim(H) = d.
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Lemma 3.6. Let H be a �nite hypothesis class.

1. VCDim(H) ≤ log2|H|.

2. The gap between VCDim(H) and log2|H| can be arbitrarily large.

Proof. Here we only give a construction for (2). Let k ≥ 1. Take X = {1, 2, . . . , k} and

H = {x 7→ sign(x− θ + 0.5) | θ ∈ {1, . . . , k}}.

We have VCDim(H) = 1 and log2|H| = log2 k.

Lemma 3.7. Let H be a hypothesis class of binary classi�ers with VC dimension d < ∞. Then H is PAC
learnable with sample complexity bounded by

C1
d+ ln(1/δ)

ϵ
≤ mH(ϵ, δ) ≤ C2

d ln(1/ϵ) + ln(1/δ)

ϵ

where C1, C2 > 0 are absolute constants. Moreover, this sample complexity can be achieved by the ERM
learning algorithm.

3


	Introduction
	Probably Approximately Correct Learning
	The Vapnik–Chervonenkis Dimension

