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1 Introduction

Prismatic cohomology is a new cohomology theory for p-adic formal schemes, introduced in the ground-
breaking work [BS22]. It unifies varies p-adic cohomology theories, including cyrstalline, de Rham, étale,
and q-de Rham cohomology (also developed in [BS22]).

The fundamental objects in prismatic cohmology are prisms, which plays a role analogous to that of a
pd-algebra in crystalline cohomology. A prism is a pair (A, I) where A is ring equipped with a Frobenius
lift (in the derived sense), and I is an ideal satisfying some technical conditions, such that A is (derived)
(p, I)-complete.

Moreover, prisms generalize the notion of perfectoid rings defined in [BMS18], corresponding to a “de-
perfected” perfectoid ring in the following sense.

1



Theorem 1.1. The category of “perfect” prisms is equivalent to the category of (integral) perfectoid rings.

For technical reasons, we restrict to the class of bounded prisms (see Definition 3.8). Let (A, I) be a
bounded prism. For every (smooth) p-adic formal scheme X over A/I, we shall associate the prismatic site
(X/A)∆ to X, and thus the prismatic cohomology ∆X/A, defined in a way similar to crystalline cohomology.
The object ∆X/A recovers many p-adic cohomology theories. Here (and throughout this note) we state the
results in the affine case for simplicity. The global results then follow by formal reasons.

Theorem 1.2. Let (A, I) be a bounded prism. Let R be a p-completely smooth A/I-algebra.

(1) Assume that (A, I) is crystalline. The crystalline comparison is

∆R/A ⊗̂
L

A,ϕ A ≃ RΓcrys(R/A).

(2) The Hodge–Tate comparison is

H•(∆R/A ⊗L
A A/I){•} ≃ Ω•

R/(A/I).

(3) Assume that (A, I) is perfect and I = (d). The étale comparison is

RΓ(Spec(R[1/p]),Z/pn) ≃ (∆R/A[1/d]/p
n)ϕ=1.

We do not discuss the de Rham comparison, the q-de Rham comparison, and the relation with homotopy
theory in this note.

1.1 Notations

Some of the notations and conventions are summarized below.

� Let p be a prime.

� For an A/I-module M , we write M{i} =M ⊗A/I I
i/Ii+1.

� For a ring A, we write D(A) for the derived ∞-category of A.

� We use “•” to denote index of complexes, (co-)simplicial objects, and dgas. It is suppressed for objects
in the derived category.

2 Preliminaries

2.1 Animated rings

Definition 2.1. Let R be a ring. Let PolyR be the category of polynomial rings over R in finitely many
variables. Note that the category PolyR admits finite coproducts given by the tensor product over R.

Lemma 2.2. Let R be a ring. The following categories are equivalent.

(1) The category of R-algebras.

(2) The full subcategory of Fun(PolyopR , Set) spanned by functors preserving finite products.

Definition 2.3. Let R be a ring. An animated R-algebra is a functor PolyopR → Ani preserving finite
products. The ∞-category AniAlgR of animated R-algebras is the full subcategory of Fun(PolyopR ,Ani).

Remark 2.4. Let R be a ring. A simplicial R-algebra is a simplicial object in the category of R-algebras. Let
sAlgR be the category of simplicial R-algebras. It is equivalent to the full subcategory of Fun(PolyopR , sSet)
spanned by functors preserving finite products. Hence the category sAlgR is equipped with a simplicial
model structure induced by the Quillen model structure on sSet, see [Lur09, Proposition 5.5.9.1]. Moreover,
the ∞-category associated to sAlgR is equivalent to AniAlgR by [Lur09, Corollary 5.5.9.3].
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Remark 2.5. Alternatively, we can apply the process of animating a cocomplete category generated under
colimits by the full-category of objects strongly of finite presentation, see [ČS24, Section 5.1.1]. For a ring
R, the following ∞-categories are eqvuivalent.

(1) AniAlgR in Definition 2.3.

(2) Ani(AlgR), the animation of the cateegory of R-algebras.

(3) Ani(Ring)R/, the slice category under the (static) ring R.

For the equivalence between (2) and (3), see [Lurb, Corollary 25.1.4.4].

Lemma 2.6. LetR be a ring. Let C be an∞-category that admits (small) sifted colimits. Let FunΣ(AniAlgR, C)
be the full subcategory of Fun(AniAlgR, C) spanned by functors preserving (small) sifted colimits. Then com-
position with the embedding PolyR → AniAlgR induces an equivalence

FunΣ(AniAlgR, C)→ Fun(PolyRp, C)

of ∞-categories.

Proof. See [Lurb, Proposition 25.1.1.5].

Definition 2.7. Let R be a ring. There is an essentially unique functor θ from AniAlgR to the ∞-category
of connective E∞-R-algebras, extending the identity on PolyR, by Lemma 2.6. For an animated R-algebra
A, the connective E∞-R-algebra θ(A) is called the underlying E∞-R-algebra of A and denoted by A.

Definition 2.8. Let A be an animated ring. The ∞-category Mod(A) of A-modules is defined as the
∞-category of modules over the underlying E∞-ring of A. The ∞-category of animated A-modules is the
full subcategory of Mod(A) of connective objects. Alternatively, animated modules can be obtained via
animating the category of pairs (R,M) where R is a ring and M is an R-module.

Definition 2.9. By animating the functor (A,M) 7→ SymA(M), we obtain the (derived) symmetric algebra
for animated modules. Let A be an animated ring. Let M be an animated A-module. Let f :M → A be a
map of animated A-modules. The quotient ring A//M is defined via the pushout diagram

SymA(M) A

A A//M.

0

f

We define quotient modules in a similar fashion.

Remark 2.10. Let A be a ring. Let f1, . . . , fr be elements of A. Then A//(f1, . . . , fr) can be represented
by the Koszul complex Kos(A; (f1, . . . , fr)).

Definition 2.11. Let A be an animated ring. Let M be an animated A-module. We say that M is flat
(resp. faithfully flat) over A if π0(M) is a flat (resp. faithfully flat) π0(A)-module and if the natural morphism
πi(A)⊗π0(A) π0(M)→ pii(M) is an isomorphism for every i.

2.2 Derived completion

Definition 2.12. Let A be an animated ring. Let I = (f1, . . . , fr) ⊂ π0(A) be a finitely generated ideal.
Let M be an A-module. The (derived) I-completion of M is defined as

M̂ = lim
n≥0

M//In.

We say that M is (derived) I-complete if the natural map M → M̂ is an isomorphism. The full subcategory

of I-complete A-modules is usually denoted by D̂(A).
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Lemma 2.13. Let A be an animated ring. Let I = (f1, . . . , fr) ⊂ π0(A) be a finitely generated ideal. The

inclusion functor D̂(A)→ D(A) admits a left adjoint given by the I-completion functor.

Proof. See [Sta, Tag 091V] for the case A is discrete.

Lemma 2.14. Let A be a ring. Let I be a finitely generated ideal of A. Let K ∈ D(A) be I-complete. If
K ⊗L

A A/I = 0, then K = 0.

Proof. See [Sta, Tag 0G1U].

Definition 2.15. Let A be an animated ring. Let I = (f1, . . . , fn) ⊂ π0(A) be a finitely generated ideal.
Let B be an I-complete animated A-algebra. A sequence x1, . . . , xr ∈ π0(B) is called I-completely regular
relative to A if the map A//(f1, . . . , fn)→ B//(f1, . . . , fn, x1, . . . , xr) of animated rings is flat.

Definition 2.16. Let A be a ring. Let I be a finitely generated ideal of A.

(1) Let M be an A-module where A is viewed as an animated ring. We say that M is I-completely flat if
M//I is discrete and flat over A/I.

(2) A ring map A → B is called I-completely smooth (resp. étale) if B//I is discrete and smooth (resp.
étale) over A/I.

Lemma 2.17. Let A be a ring. Let I be a finitely generated ideal of A. Let M be a flat (resp. faithfully

flat) A-module. Then the I-completion M̂ is I-completely flat (resp. faithfully flat) over A.

Lemma 2.18. Let R be a ring. Let I be a finitely generated ideal of R. Let R→ S be a ring map of finite

I-complete tor-amplitude. Then the I-completed base-change functor − ⊗̂L

R S commutes with totalization
of cosimplicial algebras (i.e. taking limit in the derived category).

Proof. This is [BS22, Lemma 4.22].

2.3 Čech cohomological descent

Definition 2.19. Let C be a category. An object X ∈ C is called weakly final if every object of C admits
a morphism to X.

Lemma 2.20. Let C be a site. Suppose hX is a sheaf represented by a weakly final object X of C. Then
the map hX → ∗ of sheaves is surjective.

Lemma 2.21. Let C be a topos. Let Y → X be a surjective morphism in the topos C. Let Y• be the Čech
nerve of Y → X. Let A be an abelian group object of C. Then RΓ(X,A) is computed by the cosimplicial
object RΓ(Y•, A).

Proof. Since C is a topos, the map Y → X is an effective epimorphism, and thus Y• → X is a hypercovering.
The result then follows from cohomological descent, see [Sta, Tag 09VX].

2.4 Cosimplicial computations

Remark 2.22. Let M be a commutative additive monoid. We have a cosimplicial object EM defined as
follows.

(1) The simplices are [n] 7→M⊕(n+1).

(2) The face map di :M
⊕n →M⊕(n+1) is the inclusion that maps into all the components except the i-th

one.

(3) The degeneracy map si : M
⊕(n+1) → M⊕n is reducing the i-th and (i + 1)-th components using the

monoid operation. The cosimplicial object EM can be viewed as the Čech nerve of 0→M . Moreover,
the construction M 7→ EM is functorial in M .
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Remark 2.23. Let A be a Fp-algebra. Let B = A[X1, . . . , Xr]. Then B can be identified with A[M ] for
the monoid M = Nr. Moreover, the relative Frobenius B(1) → B identifies with the map A[pM ] → A[M ]
induced by the inclusion pM →M .

Remark 2.24. Let A be a Fp-algebra. Let B a polynomial A-algebra of finitely many variables. Let B• be
the Čech nerve of A→ B. Let B•,(1) be the (termwise) Frobenius twist of B• and in particular we have the
relative Frobenius B•,(1) → B• over A.

Write B = A[M ] with M = Nr for r ≥ 0. The map B•,(1) → B• can be identified with A[E(pM)] →
A[EM ] induced by the inclusion pM → M . Let S = {0, . . . , p− 1}r ⊂ M . We have a semi-cosimplicial set
ES defined in a similar way as EM , i.e. (ES)n = Sn+1, and the face map di : (ES)n−1 → (ES)n is the
inclusion to all components except the i-th one and zero for the i-the component of (ES)n. In particular,
we have an inclusion ES ⊂ EM of semi-cosimplicial sets. The decomposition M = ⊔s∈Ss + pM can be
upgraded to

M⊕(n+1) =
⊔

s∈Sn+1

s+ pM⊕(n+1).

It follows that the semi-cosimplicial A-algebra B• ≃ A[EM ] is a free module over the semi-cosimplicial
A-algebra B•,(1) ≃ A[E(pM)], and

A[E(pM)]⊗A A[ES] ≃ A[EM ].

Lemma 2.25. Let A be a Fp-algebra. Let B a polynomial A-algebra. Let B• be the Čech nerve of A→ B.
Let B•,(1) be the (termwise) Frobenius twist of B•. Let N• be a cosimplicial B•,(1)-module. Then the
natural map

N• → N• ⊗B•,(1) B•

gives a quasi-isomorphism on associated (unnormalized) chain complexes of A-modules.

Proof. Assume that B is a polynomial algebra in finitely many variables. We have

N• ⊗B•,(1) B• ≃ N• ⊗A[E(pM)] A[EM ]

≃ N• ⊗A[E(pM)] A[E(pM)]⊗A A[ES]

≃ N• ⊗A A[ES]

as semi-cosimplicial A-modules. It remains to check that the map A→ A[ES] of semi-cosimplicial A-modules
is a homotopy equivalence, and this is clear as it can be viewed as the Čech nerve of A→ A[S] which clearly
admits a section.

2.5 Crystalline cohomology

Remark 2.26. Let A be a p-torsion-free Z(p)-algebra. Let R be a smooth A/p-algebra. Let P → R be
a surjection of A-algebras where P is an ind-smooth A-algebra. Let J be the kernel of P → R. Then D,
the p-completion of the subring of P [1/p] generated by P and {γn(x);x ∈ J, n ≥ 1}, is the p-completed
pd-envelope of P → R. In particular, D → R is a surjection of A-algebras with p nilpotent on D.

Construction 2.27. Let A be a ring. Let R be a smooth A/p-algebra. Let B0 → R be a surjection of
A-algebras with B0 being the p-completion of a polynomial A-algebra. Let J0 be the kernel of B0 → R. Let
B be the p-completion of the free δ-A-algebra on B0. Let R′ = B/J where J = J0B. Let D0 (resp. D) be
the p-completed pd-envelope of J0 ⊂ B0 (resp. J ⊂ B). The situation is summarized in the diagram

A B0 B

D0 D

A/p R R′.
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For every n ≥ 1, the rings D0/p
n (resp. D/pn) identifies with the pd-envelope of B0/p

n → R (resp. B/pn →
R′). In particular, we obtain an object (D/pn → R′ ← R) of the big crystalline site CRYS(R/A). The
pro-object (D/pn → R′ ← R)n≥1 of CRYS(R/A) is weakly initial, i.e. every object of CRYS(R/A) admits a
morphism from some term of the pro-object (note that this is equivalent to being a weakly initial object in
the category Pro(CRYS(R/A)) of pro-objects). Let D• be the cosimplicial object obtained by applying the
construction B0 7→ D to the Čech nerve of A → B0. Then (D•/pn → (R′)• ← R)n≥1 is the Čech nerve of
the pro-object. Therefore RΓcrys(R/A) is computed by D•, cf. [BdJ11, Lemma 2.4] and [Sta, Tag 07LH].

2.6 δ-rings

Definition 2.28. A δ-ring is a Z(p)-algebra A equipped with a map δ : A→ A of sets such that

(1) δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y);

(2) δ(x+ y) = δ(x) + δ(y) + 1
p (x

p + yp − (x+ y)p).

An element d of a δ-ring A is called distinguished if δ(d) is a unit of A.

Definition 2.29. Let (A, δ) be a δ-ring. The associated Frobenius endomorphism is ϕA : A→ A defined by

ϕA(x) = xp + pδ(x).

It is a lift of the Frobenius on A/p.

Remark 2.30. Let W2(R) be the ring of Witt vectors of length 2. Recall that addition and multiplication
on W2(R) are defined as

(x0, y0) + (x1, y1) =
(
x0 + x1, y0 + y1 +

1

p

[
xp0 + xp1 − (x0 + x1)

p
])

and
(x0, y0) · (x1, y1) = (x0x1, x

p
0y1 + xp1y0 + py0y1).

Thus it is clear that δ-structures on R are equivalent to sections of the natural map W2(R)→ R.

Remark 2.31. The functor W2(−) can be extended to the category of animated rings using Lemma 2.6.
We then define an animated δ-ring as an animated Z(p)-algebra R equipped with a section of W2(R) → R,
cf. [BL22, Definition A.11]. The resulting category of animated δ-ring is equivalent to the category obtained
via animating the category of δ-rings, cf. [Mao21, Definition 5.4].

Lemma 2.32. The category of δ-rings admits all limits and colimits, perserved by the forgetful functor to
sets.

Proof. The δ-structure on limits can be constructed directly. For colimits, we can use the characterization
with W2.

Remark 2.33. By formal reasons, the forgetful from δ-rings to sets admits a left adjoint, that is, “adjoining
elements”, denoted by A{·}. However, in the following, we mostly adjoin elements in the ∞-category of
animated δ-rings (say, via a pushout square), and then show the resulting animated δ-ring is discrete.

Lemma 2.34. Let A be a δ-ring. Let I be a finitely generated ideal of A containing p. Then the δ-structure
on A can be extended uniquely to a δ-structure on the I-completion of A.

Proof. See [BS22, Lemma 2.18].

Lemma 2.35. Let A be a δ-ring. Let d be an element of A. Assume that p, d ∈ rad(A). Then d is an
distinguished element if and only if p ∈ (d, ϕ(d)).

Proof. See [BS22, Lemma 2.25].

6

https://stacks.math.columbia.edu/tag/07LH


Lemma 2.36. Let A be a δ-ring. Let d = fh be an distinguished element of A. If f, p ∈ rad(A), then f is
distinguished in A and h is a unit of A.

Proof. We have
δ(d) = fpδ(h) + hpδ(f) + pδ(f)δ(h).

The claim follows directly.

Lemma 2.37. Let Z(p){x} be the free δ-ring on {x}.
(1) The ring Z(p){x} is the polynomial Z(p)-algebra on {x, δ(x), δ2(x), . . . }.

(2) The associated Frobenius ϕ on Z(p) is faithfully flat.

Proof. Proof of (1). Let A be the polynomial Z(p)-algebra Z(p)[x0, x1, . . . ]. We define an endomorphism ϕ
of A by

ϕ(xi) = xpi + pxi+1

for i ≥ 0. Then ϕ lifts the Frobenius on A/p, and thus it corresponds to a unique δ-structure on A as A is
p-torsion-free. Unwinding the definitions, wee see that δ(xi) = xi+1. The universal property is clear.

Proof of (2). We first write ϕ : A→ A as the filtered colimit of

ϕi : Z(p)[x0, . . . , xi]→ Z(p)[x0, . . . , xi+1].

It suffices to show that both ϕi[1/p] and ϕi/p are faithfully flat. It is clear that ϕi[1/p] can be written as

ϕi[1/p] : Q[x0, ϕ(x0), . . . , ϕ
(i− 1)(x0)]→ Q[x0, ϕ(x0), . . . , ϕ

i(x0)]

where ϕi[1/p] shifts generators. Hence ϕi[1/p] is faithfully flat. It is also clear that ϕ/p can be identified
with the inclusion

ϕi/p : Fp[x0, . . . , xi]→ Fp[x0, . . . , xi+1]

which is clearly faithfully flat.

Lemma 2.38. Let A be a p-complete animated δ-ring. Let B be a p-complete animated δ-A-algebra. Let
x1, . . . , xr be a sequence in π0(B) that is p-completely regular relative to A. Then C = B{x1/p, . . . , xr/p}∧
is p-completely flat over A.

Proof. See [BS22, Corollary 2.44].

Lemma 2.39. Let A be a p-torsion-free δ-ring. Let f1, . . . , fr be elements of A such that the images in A/p
form a regular sequence. Let A{ϕ(f1)/p, . . . , ϕ(fr)/p} be the animated δ-ring obtained by freely adjoining
(in the category of animated δ-rings) the elements ϕ(fi)/p to A. Then A{ϕ(f1)/p, . . . , ϕ(fr)/p} is discrete,
p-torsion-free, and identifies with D(f1,...,fr)(A), the pd-envelope of (f1, . . . , fr) ⊂ A.
Proof. See [BS22, Corollary 2.39].

Lemma 2.40. Let A be a δ-ring. Let I be a finitely generated ideal of A containing p. Let B be an
I-complete I-completely étale A-algebra. Then B admits a unique δ-structure compatible with A.

Proof. This is [BS22, Lemma 2.18]. We only remark that the proof relies on the fact (a version of Elkik’s
algebraization) that an I-completely étale A-algebra can be written as the I-completion of some étale A-
algebra, see [BS22, Footnote 6].

2.7 Perfectoid rings

Definition 2.41 ([BMS18, Definition 3.5]). A ring R is perfectoid if it is p-adically complete, there is some
π ∈ R such that πp = pu for some u ∈ R×, the Frobenius x 7→ xp on R/p is surjective, and the kernel of
Fontaine’s map θ : Ainf(R)→ R is principal.

Lemma 2.42 ([BMS19, Proposition 4.19]). Let R be a perfectoid rings.

(1) The kernel of θ : Ainf(R) → R is generated by a non-zero-divisor ξ of the form p + [π♭]pα where
π♭ = (π, π1/p, . . . ) ∈ R♭ and α ∈ Ainf(R).

(2) We have R[p∞] = R[p]. In particular, the ring R has bounded p∞-torsion.
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2.8 The arc topology

Remark 2.43. Recall that the valuation group of a valuation ring of rank 1 can be embedded in the the
additive group R. We say that a valuation ring is eudoxian if its rank is ≤ 1, following [Ked21, Defini-
tion 20.2.1].

Definition 2.44 ([BM21, Definition 1.2]). A map f : Y → X of (qcqs) schemes is called an arc cover if
for every eudoxian valuation ring V and a map Spec(V ) → X, there is an extension V → W of eudoxian
valuation rings and a map Spec(W ) → Y lifting f . The arc topology on the category of schemes is the
Grothendieck topology where {fi : Yi → X}i∈I is a covering family if for every affine open V ⊂ X, there
exist a map t : K → I of sets with K finite, and affine opens Uk ⊂ f−1

t(k)(V ) for k ∈ K such that the induced
map ⊔kUk → V is an arc cover.

The following variant is used in the étale comparison theorem.

Definition 2.45. A map f : Y → X of schemes is called an arc-p cover if it satisfies the condition for an
arc-cover in Definition 2.44 for every p-complete eudoxian valuation ring V . The arc-p topology is defined
similarly using arc-p covers.

Lemma 2.46. Let R be a Z(p)-algebra. Let F be a torsion sheaf on Spec(R)ét. Then the functor

S 7→ RΓ(Spec(S∧
p [1/p]),F)

is a sheaf for the arc-p topology.

Proof. See [BM21, Corollary 6.17].

3 Prisms

3.1 Basics

Definition 3.1. A δ-pair is a pair (A, I) consisting of a δ-ring A and an ideal I of A.

Definition 3.2. A prism is a δ-pair (A, I) satisfying the following properties.

(1) The ideal I defines a Cartier divisor on Spec(A), i.e. I is an invertible A-module.

(2) The ring A is (p, I)-complete.

(3) We have p ∈ I + ϕ(I)A.

Remark 3.3. The first condition implies that the ideal I is finitely generated. The third condition is
satisfied when I is generated by a distinguished element, cf. Lemma 2.35.

Lemma 3.4. Let (A, I) be a prism. Then there exists a faithfully flat map A→ A′ of δ-rings such that IA′

is generated by a distinguished element d.

Proof. This is [BS22, Lemma 3.1].

Lemma 3.5. Let (A, I)→ (B, J) be a map of prisms. Then we have a natural isomorphism I ⊗A B ≃ J of
B-modules. In particular, we have J = IB.

Proof. This is [BS22, Lemma 3.5].

Lemma 3.6. Let (A, I) be a prism. Let A → B be a map of δ-rings. Assume that B is (p, I)-complete as
an A-algebra. Then (B, IB) is a prism if and only if B[I] = 0.

Proof. This is [BS22, Lemma 3.5].

Definition 3.7. A map (A, I) → (B, J) of prisms is flat (resp. faithfully flat) if the underlying ring map
A→ B is (p, I)-completely flat (resp. faithfully flat).
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3.2 Bounded prisms

Definition 3.8. Let (A, I) be a prism.

(1) It is called bounded if A/I has bounded p∞-torsion.

(2) It is called orientable if the ideal I is principal, and a choice of generator is called an orientation. It is
called oriented if an orientation is chosen.

Lemma 3.9. Let (A, I) be a bounded prism.

(1) The ring A is classically (p, I)-complete.

(2) Let M ∈ D(A) be (p, I)-complete and (p, I)-completely flat. Then M is discrete and classically (p, I)-
complete. Moreover, we have M [I] = 0 and M/IM has bounded p∞-torsion.

(3) There exists a faithfully flat map (A, I)→ (B, IB) of prisms where (B, IB) is bounded and orientable.

Proof. This is [BS22, Lemma 3.7].

Remark 3.10. In particular, if (A, I)→ (B, IB) is a flat map of prisms with (A, I) bounded, then (B, IB)
is also bounded.

Lemma 3.11. Let (C, IC)
c←− (A, I)

b−→ (B, IB) be maps of bounded prisms where b is faithfully flat. Then
the pushout of b along c exists in the category of prisms and it is a faithfully flat map of bounded prisms.

Proof. Take D to be the (p, I)-completion of B ⊗L
A C. Then D is (p, I)-completely flat over A as b is flat.

Then D is concentrated in degree zero, D[I] = 0, and D/ID has bounded p∞-torsion, by Lemma 3.9. It
follows that (D, ID) is a bounded prism by Lemma 3.6. It is clear that (D, ID) has the desired universal
property.

Remark 3.12. In particular, Lemma 3.11 shows that faithfully maps generate a Grothendieck topology on
the category of bounded prisms, which we refer to as the flat topology.

Lemma 3.13. Let (A, I)→ (B, IB) be a faithfully flat map of bounded prisms. Let (B•, IB•) be the Čech
nerve of (A, I)→ (B, IB). Then we have A ≃ lim∆B

• as animated rings.

Proof. We have

lim
∆
B• = lim

[n]∈∆

(
B⊗A(n+1)

)∧
(p,I)

= lim
[n]∈∆

lim
m
B⊗A(n+1)//(p, I)m = lim

m
A//(p, I)m = A

where the third equality follows from faithfully flat descent of animated rings.

Remark 3.14. This descent property shows that the flat topology on the category of bounded prisms, or
the prismatic site, is subcanonical.

Lemma 3.15. The assignment (A, I) 7→ D̂flat(A) carrying a bounded prism (A, I) to the category of (p, I)-
complete (p, I)-completely flat A-modules is a sheaf on the category of bounded prisms with the flat topology.

Proof. This follows from (p, I)-completely faithfully flat descent.

3.3 Perfect prisms

Lemma 3.16. The following two categories are equivalent.

(1) The category of perfectoid rings.

(2) The category of perfect prisms.

The functors are R 7→ (Ainf(R), ker(θ)) and (A, I) 7→ A/I respectively.

Proof. Omitted.

Lemma 3.17. Let (A, I) be a perfect prism corresponding to a perfectoid ring R = A/I. Let (B, J) be a
prism. Then every map A/I → B/J of rings lifts uniquely to a map (A, I)→ (B, J) of prisms.

Proof. Omitted.
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3.4 Prismatic envelopes

Lemma 3.18. Let (A, I) be a prism. The forgetful functor from the category of prisms over (A, I) to the
category of δ-pairs over (A, I) admits a left adjoint.

Proof. Assume that I = (d) is principal. Let (A, (d))→ (B, J) be a map of δ-pairs. Let B0 = A{J/d}∧ and
let B1 be the (p, d)-completion of the maximal d-torsion-free quotient of B0. If B1[d] = 0, then (B1, dB1) is
a prism by Lemma 3.6, and (B1, dB1) has the the desired universal property. Otherwise, let B2 be the (p, d)-
completion of the maximal d-torsion-free quotient of B1. This (transfinite) operation terminates because a
countably filtered colimit of (p, d)-complete rings is (p, d)-complete.

Lemma 3.19. Let (A, I) be a bounded prism. Let (A, I)→ (B, J) be a map of δ-pairs where B is a (p, I)-
complete (p, I)-completely flat δ-A-algebra. Assume that J = (I, x1, . . . , xr) for a sequence x1, . . . , xr ∈ B
that is (p, I)-completely regular relative to A. Let (A, I) → (C, IC) be the prismatic envelope of (A, I) →
(B, J).

(1) The ring C is (p, I)-completely flat over A. In particular, the prism (C, IC) is bounded.

(2) The construction (B, J) 7→ (C, IC) commutes with base-change along any map (A, I) → (A′, IA′) of
bounded prisms.

(3) The construction (B, J) 7→ (C, IC) commutes with flat localization on B.

Proof. By Lemma 3.9 and Lemma 3.15, we may assume that I = (d) is principal. Take

C = B{x1/d, . . . , xr/d}∧,

formed in the category of animated δ-A-algebras. It remains to check that C is (p, d)-completely flat over
A, and it follows immediately that C is discrete, together with other desired properties.

Consider the following diagram obtained by forming pushouts in the ∞-category of (p, d)-complete ani-
mated δ-rings

Z(p){z}∧ A B B{x1/d, . . . , xr/d}∧

Z(p){y}∧ A′ B′ B′{x1/ϕ(y), . . . , xr/ϕ(y)}∧

A′{ϕ(y)/p}∧ B′′ B′′{x1/p, . . . , xr/p}∧.

z 7→d

z 7→ϕ(y)

Note that the bottom right term B′′{x1/p, . . . , xr/p}∧ is formed by Lemma 2.36 and the fact that ϕ(y) = d
is distinguished. The map Z(p){z}∧ → Z(p){y}∧ is (p, z)-completely faithfully flat by Lemma 2.37 and
Lemma 2.17. It then suffices to show that the map

A′ → B′{x1/ϕ(y), . . . , xr/ϕ(y)}∧

is (p, z)-completely flat. By Lemma 2.39, the ring A′{ϕ(y)/p}∧ identifies with the p-completion of D(y)(A
′),

and thus with the p-completion of the subring of A′[1/p] generated by A′ and {γn(y);n ≥ 1}. It follows
that the natural map A′ → A′//(p, y) factors through A′{ϕ(y)/p}∧. By Lemma 2.38 and the fact that being
(p, d)-completely regular is preserved under (p, d)-completed base-change, the map

A′{ϕ(y)/p}∧ → B′′{x1/p, . . . , xr/p}∧

at the bottom is (p, y)-completely flat. Then

B′{x1/ϕ(y), . . . , xr/ϕ(y)}∧ ⊗A′ A′//(p, y) ≃ B′′{x1/p, . . . , xr/p}∧ ⊗A′{ϕ(y)/p}∧ A′//(p, y)

is discrete and flat over A′/(p, y). Therefore B′{x1/ϕ(y), . . . , xr/ϕ(y)}∧ is (p, y)-completely flat over A′, as
desired.
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Lemma 3.20. Let (A, I) be a bounded prism. Let R be a p-completely smooth A/I-algebra. Let B0 → R
be a surjection with B0 being a (p, I)-completely smooth A-algebra. Let B0 → B be a (p, I)-completely
flat map with B being a (p, I)-complete δ-A-algebra. Let J0 be the kernel of B0 → R. Let J ⊂ B be the
(p, I)-completion of J0B. Then the map (A, I)→ (B, J) of δ-pairs satisfies the conditions of Lemma 3.19.

Proof. This follows from the standard properties of smoothness.

4 The prismatic site

4.1 Basics

Let (A, I) be a bounded prism. Let R be an A/I-algebra.

Definition 4.1. We define a category (R/A)∆ as follows.

(1) The objects of (R/A)∆ are pairs (B, u) where (B, IB) is a bounded prism over (A, I), and u : R→ B/IB
is a map of A/I-algebras. Such an object is often denoted by B → B/IB ← R.

(2) A morphism (B, u)→ (C, v) in (R/A)∆ is a map f : B → C of δ-A-algebras such that the diagram

R B/IB

R C/IC

u

id f

v

commutes. Note that f is automatically a map of prisms over (A, I).

A map (B, u)→ (C, v) in (R/A)∆ is called a flat cover if the map (B, IB)→ (C, IC) of prisms is faithfully
flat, i.e. the ring map B → C is (p, I)-completely faithfully flat.

The prismatic site of R over (A, I) is the category (R/A)op∆ equipped with the Grothendieck topology
given by flat covers.

Remark 4.2. The category (R/A)∆ is not a small category. However, there will not be genuine set-theoretical
issues, as all the presheaves we consider are already sheaves.

Definition 4.3. We define the presheaf O∆ on (R/A)op∆ valued in A-algebras by the assignment (B, u) 7→ B.
It is a sheaf by Lemma 3.13. It is called the structure sheaf of the prismatic site (R/A)op∆ . The prismatic
complex of R over (A, I) is

∆R/A = RΓ((R/A)op∆ ,O∆) ∈ D(A).

We set ∆R/A = ∆R/A ⊗L
A A/I.

Remark 4.4. We mainly use the above definition if R is a smooth A/I algebra, in which case it coincides
with the Kan extended version, see below.

Definition 4.5. Consider the functor R 7→ ∆R/A from the category of finite polynomial A/I-algebras to
the category of commutative algebra objects in the ∞-category of (p, I)-complete objects in D(A) equipped
with a ϕA-semilinear endormophism. It can be extended to

∆•/A : AniAlgA/I → D̂ϕA
(A).

It is called derived prismatic cohomology in [BS22, Construction 7.6].
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4.2 The Čech–Alexander complex

Let (A, I) be a bounded prism. Let R be a p-completely smooth A/I-algebra. Let B0 → R be a surjection
of A-algebras with B0 being the (p, I)-completion of a polynomial A-algebra.

Construction 4.6. We shall construct a weakly initial object of (R/A)∆.
Let B be the (p, I)-completion of the free δ-A-algebra on B0. Let J0 be the kernel of B0 → R. Let R′ be

the p-completion of B/J0B. Let J be the kernel of B → R′. Let (C, IC) be the prismatic envelope of (B, J)
over (A, I). The situation is summarized in the following commutative diagram.

A B0 B C

A/I R R′ C/IC

In particular, we obtain an object (C, u : R→ C/IC) of the category (R/A)∆.
Let (D, v) be another object of (R/A)∆. As D is (p, I)-complete and B0 is the (p, I)-completion of a

polynomial A-algebra, by the universal property of (p, I)-completion, there exists an A-algebra map B0 → D
that lifts the A/I-algebra map R→ D/ID, see Lemma 2.13 and the following diagram

A B0 D

A/I R D/ID.

The map B0 → D extends to an A-algebra map B → D, as D is a δ-A-algebra and B is the free δ-A-algebra
on B0. Since the square on the left

B0 B D

R R′ D/ID.

is a pushout, there exists a unique dashed map R′ → D/ID fitting into the diagram. In particular, the map
B → D is a map (B, J) → (D, ID) of δ-pairs, and thus by the universal property of prismatic envelopes,
it induces a unique map (C, IC) → (D, ID) of prisms over (A, I). It follows that the map induces a map
(C, u)→ (D, v) in (R/A)∆ as R = B0/J0.

Therefore the object (C, u) ∈ (R/A)∆ is weakly initial.

Construction 4.7. We shall construct a cosimplicial A-algebra computing the complex ∆R/A.

Let B•
0 be the (p, I)-completion of the Čech nerve of A→ B0. Apply Construction 4.6 termwise on B•

0 →
R, and we obtain a cosimplicial object (C• → C•/IC• ← R) of (R/A)∆. The functoriality of Construction 4.6
shows that the resulting cosimplicial object identifies with the Čech nerve of (C0 → C0/IC0 ← R). By
Lemma 2.21, we conclude that C• computes ∆R/A. It follows that C

•/IC• computes ∆R/A.

4.3 Permanence properties

Let (A, I) be a bounded prism.

Lemma 4.8. Let R→ S be a p-completely étale map of p-completely smooth A/I-algebras.

(1) The natural functor (S/A)∆ → (R/A)∆ admits a left adjoint F .

(2) Then the natural map
∆R/A ⊗L

R S → ∆S/A

is an isomorphism.
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Proof. Proof of (1). Let B → B/IB ← R be an object of (R/A)∆. By Elkik’s algebraization, we choose an
étale R-algebra S0 such that S is the p-completion of S0. By [Sta, Tag 04D1], we can choose an étale B-
algebra C1 such that C1/IC1 ≃ B/IB⊗RS0. Let C be the (p, I)-completion of C1. Then C is (p, I)-complete
(p, I)-completely étale over B, and thus it admits a unique δ-structure compatible with B by Lemma 2.40.
So we obtain an object

C → C/IC ≃ B/IB ⊗̂L

R S ← S

of (S/A)∆ satisfying the desired universal property.
Proof of (2). Choose a surjection B0 → R with B0 being (p, I)-completion of a polynomial A-algebra,

and we obtain a cosimplicial object (C• → C•/IC• ← R) by Construction 4.7. Let

(D• → D•/ID• ← S) = F (C• → C•/IC• ← R).

Then (D• → D•/ID• ← S)t is the Čech nerve of the weakly initial object (D0 → D0/ID0 ← S), and thus
D•/ID• computes ∆S/A. The construction of F in (1) shows that C•/IC• ⊗L

R S ≃ D•/ID•. We conclude
by Lemma 2.18.

Lemma 4.9. Let (A, I) → (A′, IA′) be a map of bounded prisms such that the ring map A → A′ is of
finite (p, I)-complete tor-amplitude. Let R′ = R ⊗̂A A

′ be the (p, I)-completed base-change. Then we have
a natural isomorphism

∆R/A ⊗̂A A
′ ≃ ∆R′/A′

and the similar holds for ∆R/A.

Proof. Use Construction 4.7 to obtain a cosimplicial A-algebra C• computing ∆R/A, apply −⊗̂
L

AA
′ termwise

to C•, and finish using Lemma 2.18.

5 Comparision theorems

5.1 The crystalline comparison

In this section we prove the crystalline comparison theorem, first for the pd-thickening A→ A/p, and then
the general situation. Although both proof involve some choices, the resulting comparison isomorphism is
canonical, and we omit relevant discussions (see Remark 5.6).

Definition 5.1. A prism (A, I) is called cyrstalline if I = (p).

Remark 5.2. A δ-pair (A, (p)) is crystalline if and only if A is p-torsion-free and p-complete.

Lemma 5.3. Let (A, (p)) be a cyrstalline prism. Let R be a smooth A/p-algebra. Let R(1) be the pullback
of R along the Frobenius A/p→ A/p. Then we have a natural isomorphism

∆R(1)/A ≃ RΓcrys(R/A)

of E∞-A-algebras, i.e. it is an isomorphism of commutative algebras in D(A).

Proof. Choose a surjection B0 → R of A-algebras where B0 is the p-completion of a polynomial A-algebra (for
example the polynomial algebra on R). We obtain cosimplicial A-algebras D• and C• computing the crys-
talline cohomology RΓcrys(R/A) and the prismatic cohomology ∆R/A, respectively, using Construction 2.27

and Consruction 4.7. By a close inspection on the construction of the Čech–Alexander complex, it holds
that ϕ∗AC

•, i.e. the termwise pullback along the associated Frobenius, computes ∆R(1)/A. Recall that D
•, by

definition, is the (termwise) p-completion of the pd-envelope DJ•(B•). By Lemma 2.39, we have a natural
isomorphism

D• ≃ B•{ϕ(J•)/p}∧.

By Lemma 3.19, we know that C•, as the prismatic envelope of (B•, J•), identifies with B•{J•/p}∧. Hence
we obtain a natural comparison map

η : ϕ∗AC
• ≃ ϕ∗A(B•{J•/p}∧)→ B•{ϕ(J•)/p}∧ ≃ D•
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of cosimplicial A-algebras. Moreover, the cosimplicial A-algebra D• can be identified with ϕ∗AC
•⊗B•,(1)B• ≃

ϕ∗B•C•. Applying Lemma 2.25, we see that η induces a quasi-isomorphism after modulo p. It follows that η
is a quasi-isomorphism by Lemma 2.14.

Remark 5.4. Let A be a ring. Let I be a pd-ideal of A such that p ∈ I. For x ∈ I, we have xp = p! · γp(a),
cf. [Sta, Tag 07GM]. It follows that the absolute Frobenius A/p→ A/p induces a ring map ψ : A/I → A/p.

Lemma 5.5. Let (A, (p)) be a crystalline prism. Let I be a pd-ideal of A with p ∈ I. Let R be a smooth
A/I-algebra. Let R(1) = R ⊗A/I A/p where A/p is regarded as an A/I-algebra via the map ψ. Then there
is a natural isomorphism ∆R(1)/A ≃ RΓcrys(R/A) of E∞-A-algebras.

Proof. The natural map A/p → A/I is surjective, and thus we can choose a smooth A/p-algebra R̃ lifting
R by [Sta, Tag 07M8]. By Lemma 5.3, we have the isomorphism

∆R̃(1)/A ≃ RΓcrys(R̃/A).

Note that R̃(1) ≃ R(1) as the Frobenius A/p → A/p is the composition A/p → A/I → A/p. By [Ber06,

Théorème 3.5.1], we have a canonical isomorphism RΓcrys(R̃/A) ≃ RΓcrys(R/A). Therefore we obtain a
functorial isomorphism ∆R(1)/A ≃ RΓcrys(R/A).

Remark 5.6. We now explain briefly why the comparision map is canonical.

(1) In Lemma 5.3, a map B0 → R is chosen. The collection of such maps B0 → R forms a sifted category,
and it is weakly contractible when viewed as an ∞-category, cf. [Lura, Tag 02QL]. Hence the map to
the mapping anima MapAlg(D(A))(∆R(1)/A, RΓcrys(R/A)) is null-homotopic, cf. [Lura, Tag 050U].

(2) In Lemma 5.5, we choose a lift R̃. The resulting comparison map is actually compatible with a Čech–
Alexander style construction in (1). We omit the details here and refer the readers to [BS22].

Remark 5.7. The canonical comparison map η : ∆R(1)/A ≃ RΓcrys(R/A) is compatible with the Frobenius,
see the proof of [BS22, Theorem 5.2].

5.2 The Hodge–Tate comparison

Let (A, I) be a bounded prism. We prove the Hodge–Tate comparison in three steps.

(1) The first step is to prove the characteristic p case, which is deduced from the crystalline comparison.

(2) The second step is to prove the comparison for affine spaces by reducing to (1). Then we can construct
the Hodge–Tate comparison map for smooth A/I-algebras.

(3) The last step is to prove that the Hodge–Tate comparison map is an isomorphism by reducing to (2).

Lemma 5.8. Let R be an Fp-algebra. Let S be a finite polynomial R-algebra. Let ϕ : S(1) → S be the
relative Frobenius. Then there is a quasi-isomorphism of S(1)-dga

(Ω•
S(1)/R, 0)→ (Ω•

S/R, ddR)

extending ϕ (in degree zero).

Proof. This is clear using a basis. Alternatively, this is a special case of [Kat70, Theorem 7.2].

Lemma 5.9. Let (A, (p)) be a crystalline prism. Let S be a smooth A/p-algebra. Then we have an
isomorphism

Hi(∆S/A){i} ≃ Ωi
S/(A/p).
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Proof. By the standard properties of smoothness (say [Sta, Tag 054L]) and Lemma 4.8, we may assume that
S is a finite polynomial algebra over A/p. By Lemma 4.9, we reduce to the case A = Zp. Then S = R(1) for
R = Fp[X1, . . . , Xn]. We have ∆S/A ≃ RΓcrys(R/A) by the crystalline comparison, and thus

∆S/A ≃ RΓcrys(R/A)⊗L
A A/p ≃ ΩR/(A/p)

by the comparison between crystalline cohomology and de Rham cohomology. Therefore the claim follows
from Lemma 5.8.

Construction 5.10. Let (A, (d)) be then universal oriented prism, i.e. A is the (p, d)-completion of A0 =
Z(p){d, δ(d)−1} and I = (d). Note that A/d is p-torsion-free and the Frobenius on A/p is flat. Let
B = A{ϕ(d)/p}∧ be the p-completed simplicial δ-A-algebra obtained by freely adjoining ϕ(d)/p to A, cf.
Lemma 2.39. It follows that the A-algebra B is discrete, (p, ϕ(d))-complete, (p, d)-complete, p-torsion-free,
and identifies withthe p-completed pd-envelope of (d) ⊂ A. Let α : A → B be the composition of the
structure map A→ B and the associated Frobenius ϕ : A→ A.

Remark 5.11. The map α/p can be factored as

A/p→ A/(p, d)
ϕ−→ A/(p, dp)→ B/p ≃ D(d)(A/p).

Note that the first map is of finite d-complete tor-amplitude, and that the seond and the thirde map are
both faithfully flat. It follows that the completed base-change functor

α̂∗ : D̂(A)→ D̂(B)

on the (p, d)-complete objects of the derived categories has the following properties.

(1) The functor α̂∗ is conservative.

(2) The functor α̂∗ has finite (p, d)-complete tor-amplitude.

(3) The functor α̂∗ preserves prismatic cohomology, i.e. for every p-completely smooth A/I-algebra R with
p-completed base-change RB to B/IB, we have an isomorphism α̂∗∆R/A ≃ ∆RB/B .

Construction 5.12. Let R be a p-completely smooth A/I-algebra. We have a fibre sequence

∆R/A ⊗L
A I

i+1/Ii+2 → ∆R/A ⊗L
A I

i/Ii+2 → ∆R/A ⊗L
A I

i/Ii+1

induced from Ii+1/Ii+2 → Ii/Ii+2 → Ii/Ii+1. The long exact sequence gives maps

β : Hi(∆R/A){i} → Hi+1(∆R/A){i+ 1}

for every i ≥ 0. Thus we obtain a differential graded algebra H•(∆R/A){•} over A/I. We have the natural
map

η0 : Ω0
R/(A/I) = R→ H0(∆R/A){0}.

By the universal property of Kähler differentials, we obtain a map of R-modules

η1 : Ω1
R/(A/I) → H1(∆R/A){1}

corresponding to the derivation β ◦ η0.

Lemma 5.13. Let R = (A/I)[X]∧.

(1) Both η0 : R→ H0(∆R/A) and η
1 : Ω1

R/(A/I) → H1(∆R/A){1} are isomorphisms.

(2) Hi(∆R/A) = 0 for i > 1.
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Proof. We start with several reductions. First, we can reduce to the case that (A, I) is orientable by
Lemma 3.9. Choose an orientation I = (d). Let α : A0 → B0 be the map defined in Construction 5.10
where A0 is the universal oriented prism. We have a unique map A0 → A by the universal property. Let

B = A⊗̂L
A0
B0. By Remark 5.11, the functor β̂∗ : D̂(B)→ D̂(A) is conservative. The complex β̂∗∆R/A admits

an explicit description (by chosing a suitable cosimplicial object computing ∆R/A, e.g. [BS22, Remark 4.19])

as the completed pullback of ∆Fp[X]/Zp
along the natural map Zp → B. Hence it suffices to prove the claim

for ∆Fp[X]/Zp
. In this special case, the base prism is (A, (p)). Then we are done by Lemma 5.9.

Remark 5.14. The above proof obviously generalizes to R = (A/I)[X1, . . . , Xn]
∧, in the sense that

Hd(∆R/A) = 0 for d > n and for d ≤ n the comparison map ηd is an isomorphism, once the correpsonding
comparison maps are defined (which is not the case at this point).

Lemma 5.15. Let R be a p-completely smooth A/I-algebra. Let f ∈ R. Then β(f) ∈ H1(∆R/A){1} squares
to zero in H2(∆R/A){2}.

Proof. Note that the element f corresponds to a map (A/I)[X]∧ → R, and then the result follows from
Lemma 5.13 by functoriality.

Remark 5.16. Let B → C be a ring map. Recall that the de Rham complex Ω•
C/B , viewed as a strictly

commutative differential graded algebra over B, has the following universal property. Let E• be a commu-
tative B-dga with Ei = 0 for i < 0. Let η : C → E0 be a B-algebra map such that for every x ∈ C, the
element y = d(η(x)) ∈ E1 satisfies y ·y = 0 (note that this is automatic if E• is strictly graded commutative,
see [Sta, Tag 061W]). Then the map C → E0 extends uniquely to a map Ω•

C/B → E• of B-dgas.

Construction 5.17. Combining Lemma 5.15 and Remark 5.16, we obtain the Hodge–Tate comparison

η• : Ω•
R/(A/I) → H•(∆R/A){•}

of commutative differential graded R-algebras, for a p-completely smooth A/I-algebra R.

Lemma 5.18. Let R be a p-completely smooth A/I-algebra. Then the Hodge–Tate comparison map

η• : Ω•
R/(A/I) → H•(∆R/A){•}

is an isomorphism of A/I-dgas.

Proof. This is clear, see Remark 5.14.

5.3 The étale comparison

Let (A, (d)) be a perfect prism. Let S be a p-complete A/d-algebra. Write F and G for the functors on
p-complete A/d-algebras

F (S) = RΓ(Spec(S[1/p]),Z/pn), G(S) = (∆S/A[1/d]/p
n)ϕ=1.

In this section we sketch the construction of the étale comparison map F → G, i.e. a functorial isomorphism

RΓ(Spec(S[1/p]),Z/pn)→ (∆S/A[1/d]/p
n)ϕ=1.

Remark 5.19. By Lemma 2.46, the functor F is a sheaf for the arc-p topology.

Lemma 5.20. The functor G is a sheaf for the arc-p topology.

Proof. We first introduce the perfection of ∆S/A, defined as

∆S/A,perf = colim
[
∆S/A

ϕS−−→ ∆S/A
ϕS−−→ ∆S/A → · · ·

]∧
.

It is a (p, I)-complete E∞-A-algebras. The map

(∆S/A[1/d]/p)
ϕ=1 → (∆S/A[1/d]/p)

ϕ=1
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induced by ϕS is an isomorphism, and thus by the fact that taking fixed points of the Frobenius commutes
with completed colimits ([BS22, Lemma 9.2]), we have an isomorphism

(∆S/A[1/d]/p
n)ϕ=1 → (∆S/A,perf[1/d]/p

n)ϕ=1

for every n ≥ 1 functorial in S. The functor S 7→ (∆S/A,perf[1/d]/p
n)ϕ=1 is a sheaf for the arc topology by

[BS22, Corollary 8.11], and we can proceed as [BM21, Corollary 6.17] to show that G is in fact a sheaf for
the arc-p topology.

Construction 5.21. We shall construct a map F → G. As the arc-p topology is finer than the Zariski
topology, we obtain a map of functors

H0(F (−)) = H0(Spec((−)[1/p]),Z/pn)→ H0
arc-p(−,Z/pn).

It induces a map of sheaves
F → RΓarc-p(−,Z/pn)

because the sheaf F (valued in the derived category) is actually equal to the sheafification of the presheaf
H0(F (−)) (note that sheafification valued in the derived category computes sheaf cohomology). On the
other hand, the obvious map Z/pn → G of presheaves induces a map

RΓarc-p(−,Z/pn)→ G.

Combining the above two maps, and we obtain the étale comparison map F → G.

Lemma 5.22. The canonical map F → G in Construction 5.21 is an isomorphism. In particular, we have
a canonical isomorphism

RΓ(Spec(S[1/p]),Z/pn) ≃ (∆S/A[1/d]/p
n)ϕ=1

for each n ≥ 1.

Proof. By arc-p descent, we reduce to the case S =
∏
Ri where every Ri is an absolutely integrally closed

valuation ring of rank ≤ 1, cf. [BS22, Remark 8.9] and [BM21, Proposition 3.30]. In this case, F (S) is equal
to the product of copies of Z/pn, and G(S) can be identified with W (S♭) (see [BS22, Example 8.3]). The
desired isomorphism then follows from the Artin–Schreier–Witt exact sequence.
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