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1 Introduction

Let M be a complex manifold. One question is how to study the geometry of M . One possible approach is
to put a metric on M . Another possibility is to “linearize” M , i.e. using cohomology theories. Recall that
we have the following cohomology theories.

1. Betti cohomology H∗
B(M,Z) (which could be defined using singular cohomology or sheaf cohomology).

This is a topological invariant.

2. de Rham cohomology H∗
dR(M).

There are two important theorems in complex geometry.

Lemma 1.1 (de Rham isomorphism). H∗
B(M,Z) ⊗ C ≃ H∗

dR(M).

Proof. Hint: use the holomorphic Poincaré lemma, i.e. the constant sheaf CM is quasi-isomorphic to the de
Rham complex OM → Ω1

M → · · · .

Note that de Rham cohomology is equipped with complex conjugation and a filration (coming from the
hypercohomology).

Lemma 1.2 (Hodge decomposition). If M is compact Kähler (for example M is projective), then we have
a functorial decomposition

Hn
dR(M) ≃

⊕
p+q=n

Hp,q(M)

where Hp,q(M) is the (p, q)-Dolbeault cohomology, with Hp,q = Hq,p.

We ask the following question. Are there algebraic analogues to these cohomology theories? For de Rham
cohomology, we have algebraic de Rham cohomology. Let X bea smooth algebriac variety over a field k.
The algebraic de Rham cohomology of X is

H∗
dR(X/k) = H∗(X,OX → Ω1

X → · · · ).

It is a correct theory in the sense of the following result.

Lemma 1.3 (Grothendieck). If k = C, then we have a canonical isomorphism

H∗
dR(X/C) → H∗

dR(X(C))

where X(C) is regarded as a complex manifold.
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Proof. Hint: use GAGA for the projective case, and the smooth case follows by standard techniques.

However, algebraic de Rham cohomology has different behaviours in positive characteristics. For example,
consider the affine line X = A1

Fp
= SpecFp[x]. In this case, we have

H∗
dR(X/Fp) = H∗(Fp[x] → Fp[x]dx)

where the map Fp[x] → Fp[x]dx is f(x) 7→ f ′(x)dx (note that this is the map of global sections of OX → Ω1
X).

It follows that H0
dR(A1/Fp) = Fp[xp] which is not finite dimensional over Fp.

How about an algebraic analogue of Betti cohomology? Another feature of the Betti cohomology is its
relation with the fundamental group

H1
B(M,Z) ≃ Hom(π1(M),Z).

An answer is the étale cohomology H∗
ét(X,F) where F is some coefficient (for example Zℓ or Qℓ, but not

Z), and there is the étale fundamental group πét
1 (X).

Lemma 1.4 (Artin). If k = C, there is a natural isomorphism

Hn
B(X(C),Z) ⊗Z Zℓ ≃ Hn

ét(X,Zℓ).

Moreover, we have
πét
1 (X) ≃ πtop

1 (X(C))∧

where we perform a profinite completion of the (topological) fundamental group.

Example 1.5. For the affine line, we have

Hn
ét(A1,Zℓ) = Hn

B(C,Zℓ) =

{
Zℓ n = 0

0 n ̸= 0,

and
πét
1 (A1) = πtop

1 (C)∧ = 0.

Another example is
πét
1 (Gm, 1) = πtop

1 (C×, 1)∧ = Ẑ(1).

Recall that the fundamental group π1(M) can be alternatively described as the automorphism group

of the universal covering M̃ → M . This gives a Galois theory for covering spaces. The completed version
π1(M)∧ then corresponds to the Galois theory for finite covering spaces (which is more desired in the algebraic
case, as it’s really hard to write, say, the exponential map as a polynomial). So the first step to algebraize
the theory is to define an algebraic notion of “local isomorphisms” of algebraic varieties. This is called étale
morphisms.

Étale cohomology is a good cohomology theory for algebraic varieties even in characteristic p. Let X0

be a smooth algebraic variety over k = Fq of characteristic p. Let FX0 : X0 → X0 be the (q-th) absolute
Frobenius. Let X = X0 ⊗Fq Fq. It is equipped with an Fq-scheme endomorphism F = FX0 ⊗ idFq

. For

ℓ ̸= p, we obtain an endomorphism F ∗ of the finite dimensional Qℓ-vector space Hn
ét(X,Qℓ). Note that

(X(Fp))F
n=id = X0(Fqn) for n ≥ 1.

Lemma 1.6 (Grothendieck’s Lefschetz fixed point theorem). If X is proper over Fq, then

#X0(Fqn) = #X(Fq)F
n=id =

2 dimX∑
m=0

(−1)m tr(F ∗,n;Hm
ét (X,Qℓ)).

The generating series is

∞∑
n=1

#X0(Fqn)
tn

n
=

2 dimX0∑
m=0

(−1)m
∞∑

n=1

tr(F ∗,n;Hm)
tn

n
.
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Apply the exponential map, and we obtain

∏
x∈|X0|

1

1 − tdeg x
=

2 dimX0∏
m=0

det
(
1 − tF ∗;Hm

ét (X,Qℓ)
)(−1)m+1

where |X0| is the set of closed points of X0. Hint: when computing the left hand side, we can show that

#X0(Fqn) =
∑
d|n

∑
x∈|X0|
deg x=d

d.

We write Z(X0/Fq, t) for the left hand side, and then we obtain the zeta function

Z(X0/Fq, q
−s) =

∏
x∈|X0|

1

1 − (#k(x))−s
.

Lemma 1.7 (Deligne; Weil conjecture). If X0 is smooth and proper, then the polynomial

Pm(t) = det(1 − tF ∗;Hm
ét (X,Qℓ)) ∈ Qℓ[t]

lands in 1 + tZ[t] and is independent of ℓ. Moreover, if we write Pm(t) =
∏

(1 − αm,it) in C[t], then
|αm,i| = qm/2.

Here is another feature of étale cohomology. Let X be an algebraic variety over a field k. Let ℓ be
different from the characteristic of k. The étale cohomology Hn

ét(Xk,Qℓ) is equipped with a (continuous)
action by the absolute Galois group Galk. This gives a general construction of continuous ℓ-adic Galois
representations of k. This is important in Langlands program.

How about an algebraic analogue of the de Rham isomorphism? This is a little bit problematic as the
objects are Qℓ-vector spaces and k-vector spaces respectively. However we have the following result from
p-adic Hodge theory.

Lemma 1.8 (Tsuji, Faltings, Nizio l, ...). Let k be a finite extension of Qp. Let X be a smooth proper
algebraic variety over k. There is a canonical isomorphism

Hn
ét(Xk,Qp) ⊗Qp

BdR ≃ Hn
dR(X/k) ⊗k BdR

where BdR is Fontaine’s de Rham period ring.

2 Étale Morphisms

Let f : X → Y be a morphism of schemes locally of finite type. Recall that ΩX/Y is the sheaf of Kähler
differentials, which is a finitely generated quasi-coherent OX -module.

Example 2.1. Locally, we have X = SpecB → Y = SpecA, and B = A[x1, . . . , xn]/I. Then ΩX/Y = Ω∼
B/A

and

ΩB/A =
⊕n

i=1Bdxi

(df | f ∈ I)
.

If B = A[x]/(f(x)), then ΩB/A = A[x]/(f(x), f ′(x)). If A = K is a field, and B = L = K(α) is a finite
simple extension, then ΩB/A = 0 if and only if K(α)/K is separable.

Lemma 2.2. Let x ∈ X with image y = f(x) ∈ Y . The following are equivalent.

1. OX,x/myOX,x is a finite separable extension of k(y). In particular, mx = myOX,x.

2. We have (ΩX/Y )x = 0.

3. The diagonal ∆X/Y : X → X ×Y X is an open immersion on an open neighbourhood of x.
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Proof. Proof of (2) ⇔ (3). By Nakayama’s lemma, (2) is equivalent to (ΩX/Y )x ⊗ k(x) = 0. Locally write
X = SpecA and Y = SpecB, then ΩB/A = J/J2 where J is the kernel of B⊗A B → B. So (2) is equivalent
to Jw/J

2
w = 0 where w = ∆X/Y (x), and to Jw = 0 by Nakayama’s lemma again, and finally equivalent to

that locally near x, ∆X/Y is an isomorphism to its image.
Assume (1). Then (ΩX/Y )x ⊗ k(x) = Ω(Ox/myOx)/k(y) = 0.
Assume (2) and (3). We may assume Y = Spec k with k = k(y), and X = SpecB, and that ∆X/Y is

an open immersion. Then B is a finite k-algebra (hint: Noether normalization and (3)). Then B =
∏

Bi

is a product of local finite k-algebra. It suffices to show that each Bi is a finite separable extension of k, or
equivalently, that B ⊗k k is isomorphic to a product of copies of k. We may assume that k = k. Hence for
n ∈ SpecB, the map Bn ⊗k Bn → k is an isomorphism, and we conclude Bn = k by dimension reason.

Definition 2.3. Let f : X → Y be locally of finite presentation. Let x ∈ X.

1. We say that f is unramified at x (in the sense of EGA IV) if the equivalent conditions in the previous
lemma holds for x.

2. We say that f is étale at x if f is unramified at x and flat at x.

3. We say that f is unramified or étale if it is so at every point of X.

Lemma 2.4. First properties.

1. Local immersions which are of finite presentation are unramified. Open immersions (which are auto-
matically of finite presentation) are étale.

2. Unramified (or étale morphisms) are stable under compositions and base-changes.

3. Let f : X → Y and g : Y → Z be locally of finite presentation. If g ◦ f is unramified, then f is
unramified. If g ◦ f is étale, and g is unramified, then f is étale.

Proof. Exercise.

Example 2.5. Let L/K/Q be finite field extensions. This gives a flat morphism f : SpecOL → SpecOK .
Let q ∈ SpecOL and p = f(q) = q ∩ OK . Then f is unramified at q if and only if OL,q/pOL,q is a finite
separable extension of OK/p, if and only if pOL,q = qOL,q, i.e. e(q/p) = 1, i.e. q is unramified over p.

Example 2.6. Let k be a field. Let f : A1
k → A1

k be the map A = k[y] → B = k[x] defined by y 7→ xn.
Note that ΩB/A = k[x]/(nxn−1). If the characteristic of k does not divide n, then f is étale at (x − a) for
a ̸= 0. In any case f is not étale at (x).

Example 2.7 (Artin–Scheier covering). Let k be a field of positive characteristic p. Then

f : SpecA[z]/(zp − z − g(y)) → Spec k[y]

is finite étale, where g(y) ∈ k[y]. This implies that πét
1 (A1

k) ̸= 0.

Remark 2.8. Some literature defines unramified morphisms to be locally of finite type and ΩX/Y = 0,
which is slightly weaker than our definition. There is no difference when X,Y are noetherian. The standard
technique here is passing to limit. Assume that f : X = SpecB → Y = SpecA is of finite presentation.
Write B = A[x1, . . . , xn]/I with I = (g1, . . . , gm). We can write A = colimλ Aλ where Aλ ⊂ A are finitely
generated Z-algebras, which are noetherian. Take λ large enought such that g1, . . . , gm ∈ Aλ[x1, . . . , xn].
Let Bλ = Aλ[x1, . . . , xm]/(g1, . . . , gm). Then Bλ ⊗Aλ

A ≃ B by construction. In particular, f : X → Y
can be written as a base-change of Xλ = SpecBλ → Yλ = SpecAλ which is of finite type over Z. One can
show that f is unramified (or, flat, étale) if and only if for λ large enough, fλ is unramified (or, flat, étale).
Therefore often properties of unramified/étale morphisms are reduced to the noetherian case.

Lemma 2.9. Étale morphisms are open maps.

Proof. See the above remark, and use the fact that flat of finite type morphisms between noetherian schemes
are open.
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